电动汽车(电动汽车)中座舱对电池选项卡的激光焊接至关重要。确保焊接质量至关重要,因为它取决于诸如孔隙率的产生,熔融池中的流体流动,施加激光功率和焊接速度等因素。然而,常规激光焊接技术主要侧重于沿焊接距离调节激光参数,努力有效地减轻孔隙率的形成。虽然对激光角沿焊缝截面的效应进行了广泛的研究,但尚未探索过轴轴激光角的影响,即在垂直于焊接方向的平面中的角度的效果,尚未探索。这项研究通过在不同激光能密度下改变激光轴轴的角度,以优化专门为减少孔隙率的过程,从而引入了一种创新的激光焊接方法。通过实施铝AA1050的激光焊接的三维计算流体动力学(CFD)模型,我们在采用不同的离轴角度的同时提供了详细的分析流体流量和熔体池尺寸。我们的模型结合了多种反射,向上的蒸气压和后坐压力,以解释不同激光轴轴轴的孔隙率的形成。结果表明,在优化的激光功率和焊接速度下增加激光轴的角度可显着降低孔隙率。在激光外轴角为4.92°时,数值分析与实验熔体池宽度为11%,最小误差为2.74°,最小误差为2.6%。对于熔体池深度,在4.92°的离轴角度为4.2%,最小差为7.2%,在7.42°的离轴角度下的最小差为0.5%。本研究提出了一种通过解决孔隙形成的特定挑战来改善激光焊接过程的新方法。
电动汽车(电动汽车)中座舱对电池选项卡的激光焊接至关重要。确保焊接质量至关重要,因为它取决于诸如孔隙率的产生,熔融池中的流体流动,施加激光功率和焊接速度等因素。然而,常规激光焊接技术主要侧重于沿焊接距离调节激光参数,努力有效地减轻孔隙率的形成。虽然对激光角沿焊缝截面的效应进行了广泛的研究,但尚未探索过轴轴激光角的影响,即在垂直于焊接方向的平面中的角度的效果,尚未探索。这项研究通过在不同激光能密度下改变激光轴轴的角度,以优化专门为减少孔隙率的过程,从而引入了一种创新的激光焊接方法。通过实施铝AA1050的激光焊接的三维计算流体动力学(CFD)模型,我们在采用不同的离轴角度的同时提供了详细的分析流体流量和熔体池尺寸。我们的模型结合了多种反射,向上的蒸气压和后坐压力,以解释不同激光轴轴轴的孔隙率的形成。结果表明,在优化的激光功率和焊接速度下增加激光轴的角度可显着降低孔隙率。在激光外轴角为4.92°时,数值分析与实验熔体池宽度为11%,最小误差为2.74°,最小误差为2.6%。对于熔体池深度,在4.92°的离轴角度为4.2%,最小差为7.2%,在7.42°的离轴角度下的最小差为0.5%。本研究提出了一种通过解决孔隙形成的特定挑战来改善激光焊接过程的新方法。
与气候变化的影响有关,流体流的建模和模拟,尤其是河流和湖泊,代表了非洲的主要社会挑战。我们旨在在这些领域中培训这些领域的本地学生,尤其是在建模和数值模拟中。学校提供了流体流量建模和流体流量模拟的介绍。课程包括六个课程。部分课程的部分原因是,由于安全原因,法国教练不允许前往乍得。4课程已提前拍摄,以避免可能存在连接的问题。来自乍得的三名博士生,被邀请在马赛度过2周的时间,以参加Captation并进行更深入的成立。 这些大使使我们能够更加仔细地关注来自国外的参与者。 这些课程可在CIMPA的YouTube链上找到。 第一周致力于1D的Python编程,保护法律和双曲线系统的入门课程,最后在第二周提供了有关海洋动力学隔室模型的课程,有关分散浪潮模型的课程以及关于多孔媒体的流量课程。 学生被邀请参加小组研究,使他们能够实践他们在课堂上学到的概念并探索某些主题。 每个小组都必须在第一周结束时介绍其主题,以及课程结束时的工作成果。 下面详细介绍了六个课程的内容。来自乍得的三名博士生,被邀请在马赛度过2周的时间,以参加Captation并进行更深入的成立。这些大使使我们能够更加仔细地关注来自国外的参与者。这些课程可在CIMPA的YouTube链上找到。第一周致力于1D的Python编程,保护法律和双曲线系统的入门课程,最后在第二周提供了有关海洋动力学隔室模型的课程,有关分散浪潮模型的课程以及关于多孔媒体的流量课程。学生被邀请参加小组研究,使他们能够实践他们在课堂上学到的概念并探索某些主题。每个小组都必须在第一周结束时介绍其主题,以及课程结束时的工作成果。下面详细介绍了六个课程的内容。
摘要。本文介绍了一种用于较低流速的非侵入式流量计的开发及其首次测试。该仪表在物理上基于流体流动与从发射器到接收器穿过流体的超声波信号的相互作用。超声波流量计是目前比较常用的仪表,其优点是非侵入性(即零压力损失)和能够无缝测量任何(例如不透明)液体的流速,而无需接触液体,这一点众所周知。然而,超声波流量计测量链中仍有一些部分正在研究和开发中。它可以是信号处理本身(主要是)、其设计解决方案、不同流动情况的测量(在具有均匀速度分布的流场中测量、在具有轴对称速度分布的流场中测量、在具有一般速度分布的流场中测量)、应用的信号处理方法的验证、不确定性的评估。本文描述的流量计本身将用于空气工程中的无故障测量,但也可用作构建更复杂超声波仪表的训练设备。因此,该流量计包含比通常更多的信号发射器和接收器,并且在测量过程中捕获所有发射器-接收器组合。这种仪表称为超声波断层扫描仪,其原理也在本文概述中。到目前为止,这里没有重建的矢量场。