污水处理厂的维护不善会造成严重的生态和公共卫生问题,并可能导致影响人类生活和水质的各种水传播疾病 [1-3]。必须解决地下水污染和挥发性有机化合物 (VOC) 控制等问题,以满足环境法并保持优质的用户形象 [4-6]。极端情况下,在污水处理厂运行期间,为了有效监测工艺性能,必须执行各种控制措施 [7]。模型是强制性的,因为在计算机系统上可以比通过实验更简单地研究调整操作变量的影响。因此,许多可选设计和实用方法都可以计算出来,而无需对每个地块进行实际台架测试 [8, 9]。通过使用适当的突出变量复制执行估计模型,可以及时响应流程中的任何调整,并制定运营策略以将工厂转移到新的运营条件。这些新条件提高了流出物的稳定性和质量,并且可以
摘要:基于碳酸盐的捕获溶液中的CO 2需要大量的能量输入。通常提出用(BI)碳酸盐电解代替此步骤,作为共同生产CO/Syngas的有效替代方案。在这里,我们通过利用过程,多物理学,微动力学和技术经济模型来评估将空气接触器与(BI)碳酸盐电解液直接整合的可行性。我们表明,在接触器流出物中,CO 3 2-与HCO 3-的共呈现大大降低了电解核的性能,并最终导致CO 2捕获分数降低至≤1%。此外,我们估计(BI)碳酸盐电解的合适废水需要比常规需要的接触器大5-14倍,从而导致过程经济不利。值得注意的是,我们表明捕获溶剂内部(BI)碳酸盐电解液的再生不足以恢复CO 2。因此,我们建议将该途径在操作上可行的过程修改。总体而言,这项工作阐明了使用(BI)碳酸盐电解的集成直接空气捕获的实际操作。a
在磁约束聚变 (MCF) 领域,氚燃料循环已得到详尽研究。[1,2,3] 已经开发出处理、监测、从化学结合物种中回收、浓缩和储存氚的技术,其产量接近反应堆相关产量。[4] 关键组件已在大型托卡马克或氚处理设施中进行了测试。[5] 该技术的很大一部分可转移到适用于惯性聚变能 (IFE) 的系统。然而,操作条件与磁性情况有很大不同,因此对 IFE 燃料循环组件施加了 MCF 情况下没有的条件,因此需要针对 IFE 特定主题进行研究。燃料回路由喷射器系统和用于回收反应堆流出物的基础设施组成。MCF 中的颗粒注入是一种将 DT 冰输送到托卡马克等离子体深处的有吸引力的方法。部署在 IFE 反应堆中的目标需要特定的设计来优化燃烧分数,该分数可能高达 1/3。这可能需要不同元素的复合层。湿泡沫等靶概念将由嵌入低密度 CH 泡沫中的液态 DT 组成,也很有前景。MCF 反应堆将在真空中运行,主要成分是氢同位素。一些 IFE 反应堆设计将在中等真空(几托)下运行,主要成分是氖或氙,以帮助缓和冲击波和对第一壁的粒子冲击。MCF 反应堆必须应对等离子体与偏滤器相互作用时产生的灰尘。IFE 反应堆需要将残留的靶碎片与流出物中的挥发性氢物种分离并去除。图 1 提供了 IFE 反应堆的通用燃料循环。作为代表性示例,该设计隐含了在薄壁塑料外壳内分层使用 DT 冰。泡沫填充的液态 DT 靶和更复杂的靶设计(例如采用空腔的靶设计)将需要更广泛的碎片收集和处理子系统(具体取决于细节)。燃料循环包括两个独立的回路:一个回路为反应堆提供燃料,另一个回路用于增殖氚。反应堆流出物被分离成两股:挥发性成分在气体离开反应堆时被低温抽吸,而颗粒碎片则通过重力送入收集器并氧化以将吸收的氢与碳物质分离。低温分离器将氦灰排放到环境中,将氖/氙转移以供再利用,并通过渗透器将氢同位素排放到同位素分离器。同位素分离器将氢排放到环境中,并将氘和氚引导到胶囊工厂和靶填充系统。增殖毯回路有两个主要功能:从反应堆中提取热量和增殖氚。反应堆周围是熔盐池,用于捕获和缓和聚变中子,作为氚增殖的前体。熔盐从反应堆泵出,通过热交换器、杂质去除子系统(用于净化熔盐)、氚提取模块,然后返回到反应堆周围的安全壳中。在 380 MWe IFE 反应堆中,主要物质的摩尔流速为:H、D、T、C、O、He 和 Xe,该反应堆使用封装在薄塑料壳中的 DT 冰靶。20 毫克氚靶以 0.5 Hz 的频率注入。燃烧分数假设为 25%。聚变功率转换为电能的比率假设为 30%。假设工厂占空比为 90%。
Allonnia 将带领大家参观表面活性泡沫分馏 (SAFF®) 系统,这是一种简单、独立的 PFAS 去除解决方案。泡沫分馏是一种吸附气泡分离技术,可以从水溶液中去除 PFAS 等两亲性化学物质。两亲性物质往往会吸附在上升气泡的表面(即空气-水界面),SAFF® 利用这一点,打造可持续、几乎无浪费的 PFAS 解决方案。第一阶段 SAFF®(初级分馏)利用从大气中吸入的空气从流入水中“剥离”PFAS,并产生不含 PFAS 的流出物,其处理目标是满足 EPA 对 PFAS 的新最大污染物水平 (MCL)。含有浓缩 PFAS 的初级泡沫物构成第二阶段(二次分馏)的进料,该阶段将泡沫物浓缩至 5,000:1 以上的倍数(超浓缩)。如果需要进一步浓缩,可以生产浓缩倍数超过 200,000:1 的 PFAS 超浓缩物。超浓缩物或超浓缩物代表低容量、高浓度的 PFAS 水溶液
Cardigan STW 的改进主要集中在引入两个 Copa 膜生物反应器 (MBR) 处理厂,无需额外过滤或紫外线处理即可产生高质量的消毒流出物,同时还进行了其他改进,将工厂的设计处理流量提高到 100 升/秒。Meica Process 现场经理 Mike Hendy 解释说,Copa 安装有 64 个膜组,是“威尔士水务地区最大的,也可能是英国最大的。其主要特点是结构紧凑,可以在现有场地范围内显著提高吞吐量。” Rotork IQ 和 IQT 智能电动执行器安装在控制所有新设备区域流量和过程的阀门上,并通过三个 Profibus 2 线段连接到新的 MBR 控制室。三菱 PLC 和由 Meica Process 和 General Panel Systems 开发的定制 Copa 软件已被引入,以使工厂完全自动化运行。遥测还将 PLC 的所有数据链接到威尔士水务公司运营的中央控制室。
绿色化学是当今最受关注的课题之一。绿色化学的主要研究旨在减少或消除有害副产品的生产,并以环保的方式最大限度地提高所需产品的质量。绿色化学需要最大限度地减少人为材料及其生产过程对自然的危害。绿色化学表明研究源于对流出物响应的科学发现。绿色化学涉及 12 个原则,可最大限度地减少或消除不安全物质的使用或生产。借助绿色化学的所有宝贵理念,科学家和化学家可以显著降低对环境和人类健康的风险。通过在药品生产和研究中使用环保、无害、可再生的溶剂和催化剂,可以实现绿色化学的原则。绿色化学可以包括从减少废物到以正确方式处理废物的任何事情。所有化学废物都应以最佳方式处理,而不会对环境和生物造成任何损害。本文介绍了在日常生活中实施绿色化学原理的精选示例。
气泡疾病是一种影响居住在新鲜或海洋水域中的水生动物的疾病,这些动物与大气气体过饱和。过饱和,可能导致水生生物的气泡疾病不是最近的发现,也不是由人类活动引起的。但是,仅在近年来,过饱和才成为一个足够数量的问题,可以引起广泛的关注和关注。大多数研究的研究气体过饱和的研究受到了1960年代哥伦比亚河系统中相当大的幅度问题的刺激。最近,由于热流出物引起的过饱和的有害作用,进一步刺激了兴趣。本次审查是为了提供有关溶解气体过饱和度和所得气泡疾病的现有知识的更大传播。重新观察讨论了过饱和的原因,受到过饱和影响的生物,影响了水生器组织对气泡疾病的敏感性以及其他各种相关主题的易感性。k•owledge这是相当大的,这是本综述的长度所证明的。许多重要的问题仍有待回答。对于在天然生物下的水生生物面临的条件中应用实验室结果尤其如此
“最佳管理实践”或“BMP”是指用于防止或减少对淡水湿地、州开放水域和相邻水生栖息地造成不利影响或污染的方法、措施、设计、性能标准、维护程序和其他管理实践,有助于遵守联邦第 404(b)(1) 条准则(40 CFR 第 230 部分)、新泽西州环境保护部洪灾危险区控制法案规则(NJAC 7:13);该部门的雨水管理条例(NJAC 7:8);新泽西州土壤保护委员会颁布的新泽西州土壤侵蚀和沉积物控制标准(NJAC 2:90);以及联邦法案第 307(a) 条和该部门的地表水质量标准(NJAC 7:9B)规定的流出物限制或禁令。示例包括 33 CFR 330.6、40 CFR 233.35(a)6、该部门的洪水灾害区域技术手册和“新泽西州蚊虫控制淡水湿地管理实践手册”中规定的实践。本定义中包含的手册只是部分列表,感兴趣的人应联系该部门获取最新的列表。
摘要:生物合作代谢是一种用于治疗难治性有机物的经济和有效的技术,近年来,它已被广泛用于治疗含氯苯酚的废水。已经发现,许多条件都会影响生物合作代谢效率,例如碳源类型,碳源含量,微生物类型和环境因素。碳源浓度实验表明,当乙酸钠与黑苯胺粉的剂量比为1:2时,黑苯胺粉末的降解速率为82%,去除率为92.9%。当四氯苯酚从210 mg/L增加到2100 mg/L时,四氯苯苯酚在流出物中增加,并且微生物的活性被抑制。此外,活性污泥的沉积性能也损坏了。温度测试表明,在35°C下去除的4-氯苯酚高达2100 mg/L,并且可以在20°C下检测到废水中的明显4-氯苯酚残基。因此,通过适当控制反应堆的外部工作条件,可以实现难治性有机物(例如氯苯酚)的合作代谢。
无菌过滤器验证是药物,生物技术和医疗保健行业的重要过程,可确保无菌过滤系统的有效性和完整性。验证过程涉及测试和验证无菌过滤器的性能,以确保它们可以有效地从流体流中去除微生物和颗粒,同时保持无菌性。选择一个消毒级过滤器需要考虑许多重要问题,例如构造材料及其与要过滤的产品的兼容性。流程要求和验证需求根据过滤需求而有所不同。量一直是确保在无菌条件下产生的最终配方无菌性的关键方面。由于级别的过滤器在获得高不育保证水平方面起着重要作用,因此对这些过滤过程的验证已成为提高认识和调节性审查的主题。BACTERIAL挑战测试可用于主要功能。如果滤清器提供无菌废水,则滤波器使用它将其分类为绝育等级,并具有至少107个BRE-VUNDIMONAS DIMINUTA ATCC ATCC 19146/CM2的有效滤波器表面积的无菌流出物。因此,对无菌过滤系统的设计,验证和持续监测对于确保药品的质量和安全性至关重要。根据国际