在这项研究中,使用ANSYS-CFX软件进行离心压缩机的数值模拟。重点在于研究入口尖端清除率(ITC)对内部复合物流量和离心压缩机的空气动力学性能的影响。具体而言,本文主要强调了ITC对离心压缩机的多层次效率和总压力比,以及叶片尖端的速度和压力的变化,叶片尖端的时空演化(尖端裂缝涡旋(TLLV)(TLV)(TLV)以及沿压力和veLocity的波动。分析额定工作条件下的尖端裂变流量(TLF)和TLV运动模式,揭示了一场革命内的时空演化。快速傅立叶变换(FFT)频谱分析结果表明,TLV运动模式可能受到ITC大小的影响。叶片尖端区域中的流体流动阻力和回流逐渐降低,有效增强流场稳定性,并消除了旋转出口处的回流涡流,从而通过减小ITC有效扩展了离心压缩机的工作范围。通过降低ITC,离心压缩机的空气动力学性能在培养基和高流速范围内有效增加。此外,观察到刀片尖端区域中的压力,速度和负载与ITC没有线性关系,从而导致有关ITC的空气动力学性能的非线性变化。压力和速度光谱分析表明,与中间相比,TLF的效果在流通过的顶部更强。此外,随着ITC的增加,TLF的效果在压力侧的中间和顶部(PS)下降,同时在PS的底部和吸力侧(SS)增加。
co1:了解治理方程和基本流动特征背后的基本物理,以解决流场问题。二氧化碳:了解不同流的流动行为,并通过叠加来确定作用在气缸上的力。CO3:应用共形和kutta joukowski变换,以将作用在气缸上的力转换为机翼。CO4:应用薄机翼和有限的机翼理论来预测作用在飞机上的力和力矩。二氧化碳:应用PrandTL的举升线方程,以在简单的机翼上计算升力和力矩系数。二氧化碳:了解边界层流的基本概念。
本文基于与归一化采样的高斯核或综合高斯内核的卷积,对高斯衍生物的两种混合离散方法的性质进行了分析。研究这些离散方法的动机是,在相同规模水平上需要多个阶的多个空间衍生物时,与基于更直接的衍生近似值相比,它们基于基于更直接的衍生近似值而具有更高的效率相比,它们基于具有较高的衍生性速率,以示例性衍生性衍生性不能衍生性不能进行。我们根据定量绩效指标来表征这些混合离散方法的特性,同意它们所暗示的空间平滑量,以及它们从量表 - 流动特征探测器的相对一致性以及从自动量表选择中获得的量表的相对一致性,从尺度上的量表与尺度相关的量度相差很大,该尺度的范围与尺度的相差相差,该尺度的尺度是有效的。理论以及不同类型的离散方法之间。在设计和解释以非常精细的水平运行的规模空间算法的实验结果时,提出的结果旨在作为指导。
摘要在过去十年中,机器学习(ML)对风工程应用引起了极大的兴趣。先前基于机器学习的高层建筑物的基于机器学习的研究主要仅限于时间史或静态压力,而无需考虑空间坐标系。ML模型需要预测空间分布和瞬态风流,以设计风敏的高建筑物。因此,利用三维(3D)空间坐标系统,本研究采用ML来预测高建筑物上的瞬态风压。通过计算流体动态模拟获得了建筑物表面上的瞬态压力数据,这些模拟使用风洞数据验证。选择了极端梯度提升(XGB)模型作为机器学习模型,并且在训练和测试中都获得了良好的预测准确性。此外,在建筑物表面上,XGB模型已经很好地预测了诸如流动分离和陡峭压力梯度之类的独特流动现象。因此,这项工作演示了如何使用机器学习来预测高大建筑物的风负载并捕获重要的流动特征。
流动微生物的密度在减轻和监测动量,热和溶质边界层时表现出动态特征。看到这一点,我们检查了卡森纳米流体悬浮液的流动特征,这是由于片张的拉伸而引起的。研究了辐射,不均匀的散热器或源,热经液和布朗运动的影响。流是层流和时间依赖的。检查热量和传质特征的关节影响。速度滑移边界条件被认为是研究流量特征。建模的方程式是高度耦合和非线性的。因此,对于此模型是不可能的分析解决方案。因此,我们提出了一个数值解决方案。合适的相似性被思考将原始PDE的变态变成ODE,然后通过利用基于Runge-Kutta的射击技术来解决。借助图详细讨论了各种参数在流场上的影响。同时阐明牛顿和非牛顿液。被描述,嗜热参数的增强导致热量增强,从而降低了浓度。此外,特征是生物对流刘易斯的数量和小伙子的数量降低了动感微生物的密度。关键字:MHD,热量和传质,生物概念,卡森流体,布朗运动。
目的本研究的目的是评估通过定量MR血管造影(QMRA)在未用的AVM中测量的动静脉畸形(AVM)血流与MR-DETED MIRDEDECTED微视角的关系。方法回顾了所有接受基线QMRA和梯度回声或易感性加权MRI的未破坏AVM的患者(2004-2022)。成像数据,临床病史以及AVM血管结构和流动特征被收集和评估。AVM流是根据原发性动脉进料器内部与对侧饲养者的流量差计算的。对MR图像的综述确定了微生物检查的存在。进行了描述性统计,卡方检验和二项逻辑回归的分析。单个中心的634例脑AVM患者的结果,有89例符合纳入标准(54例微出血和35例无微毛发)。Mi-Crohemorrhage的组中计算出的AVM流量明显更高(447.9±193.1 ml/min vs 287.6±235.7 ml/min,p = 0.009)。此外,静脉异常,动脉eCtasia和弥漫性nidus的存在与微毛发显着相关(p = 0.017,p = 0.041和p = 0.041)。二进制逻辑回归发现,较高的流量预测了微型射击的存在(OR 1.002,95%CI 1.000–1.004; P = 0.031)。最高的AVM流动四分位数显着预测静脉异常的存在(OR 3.840,95%CI 1.037–14.213; P = 0.044),diffuse nidus(OR 6.800,95%CI 1.766-25.181; P = 0.005)和arterial and casia(或135%)(或13.84666666666666666666666666666666-25.181; p = 0.044)(或1.905–122.584;结论这项研究代表了第一个检查QMRA上流量测量与无破碎AVM中的微型射击之间的关联。较高的AVM流动,静脉异常,动脉膨胀和弥漫性AVM Nidus与AVM微含量的较高可能性有关。AVM中存在较高的AVM流动,具有静脉异常,弥漫性Nidus和动脉外生,表明这些血管构造发现,AVM流量和微Him鼠之间可能存在相互作用。这些发现表明,较高的AVM流与微毛发风险之间存在关系。
图4.30。Global conservation status overview of species recorded within project study area ........................................................................................................................................... 82 Figure 4.31.Location of species of local and global conservation value vis-à-vis habitat types ........................................................................................................................................... 82 Figure 4.32.保护受计划的井眼作品影响的重要植物群................................................................................................................................................... 98图4.33。Conservation significant flora affected by planned borehole, manhole and trench works ................................................................................................................................ 101 Figure 5.1.新加坡的集水区(公共事业委员会,2019年).................................................................................................................................................................................................................................................................................................在2011 - 2021年期间在荣获西风站的年度降雨量..... 111图5.3。自然流在项目研究区域的位置............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. 112图5.4。照片显示了项目研究区域内的各种流..................................... 113图5.5。流动特征调查点的位置.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................项目研究区域中地表水质采样点的位置........... 127图5.7。Surface water sampling activities .................................................................... 127 Figure 5.8.Project boundary, including original footprint (magenta) and revised footprint (cyan) ......................................................................................................................................... 137 Figure 6.1.基线噪声监测设备的设置................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. 150图6.2。项目研究区域内基线噪声监测站的位置......... 151图6.3。基线LEQ在一个星期内在N1站进行5分钟监测结果... 152图6.4。基线LEQ在一周内在N2站进行5分钟监测结果... 153图6.5。基线LEQ在一个星期内在N3站进行5分钟监测结果... 154图6.6。基线LEQ在一个星期内在N4站进行5分钟监测结果... 155图6.7。基线LEQ在一周内在N5站进行5分钟监测结果... 156图6.8。Predicted daytime noise level from Area 1 & 2 activities without mitigation measures .......................................................................................................................... 161 Figure 6.9.Predicted night-time noise level from Area 1 activities without mitigation measures ......................................................................................................................................... 162 Figure 6.10.Predicted daytime noise level from Area 3 activities without mitigation measures ......................................................................................................................................... 163 Figure 6.11.Predicted night-time noise level from Area 3 activities without mitigation measures ......................................................................................................................................... 163 Figure 6.12.通过缓解措施预测区域1和2的白天噪声水平……165图6.13。通过缓解措施预测区域1处的夜间噪声水平................................................................................................................................................................................................................................................... 165图6.14。Predicted day-time noise level at Area 3 with mitigation measures ................ 166 Figure 6.15.通过缓解措施预测区域3的夜间噪声水平............................................................................................................................................................................... 167图7.1。基线环境空气质量监测设备的设置........................................................................................................................................................................................................................................... 175图7.2。基线环境质量监测站的位置在项目区域内................................................................................................................................................................................................................................................................................. 175图8.1。基线接地振动监控设备的设置....................................................................................................................................................................................................................................................................................................................................................................... 189项目区域内的环境振动监控站的位置............................................................................................................................................. 189。在夜间调查期间观察到的CCKWW设施的人造光196图9.2。Artificial lighting observed along Dunbar Walk ................................................. 197 Figure 9.3.Example of light shielding ................................................................................ 199 Figure 9.4.Example of hedge planting using Murraya paniculata ..................................... 201 Figure 13.1.环境发生率报告流程图............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 237图13.2。Directional Clearance 1 ................................................................................. 243 Figure 13.3.Directional Clearance 2 ................................................................................. 244 Figure 13.4.Directional Clearance 3 ................................................................................. 245