摘要 — 循环平面正交场放大器 (RPCFA) 由密歇根大学设计、制造和测试。RPCFA 由多个射频源驱动,频率范围为 2.40 至 3.05 GHz,功率为 1 至 800 kW。脉冲电压由带陶瓷绝缘体的密歇根电子长束加速器 (MELBA-C) 输送到阴极,该加速器配置为提供 −300 kV、1-10 kA 的脉冲,脉冲长度为 0.3-1.0- μs。RPCFA 表现出零驱动稳定性和 15% 的带宽。在设计频率为 3 GHz、功率低于 150 kW 的情况下,微波信号的放大率观察到平均增益为 7.87 dB,变化性较高,σ = 2.74 dB。过滤该数据集以仅包含具有相同电压和电流分布的镜头,可获得 6.6 ± 1.6 dB 的增益。当注入的微波功率超过 150 kW 时,平均增益增加到 8.71 dB,变化性降低到 σ = 0.63 dB。峰值输出功率接近 6 MW,RF 击穿限制了设备的最大输出功率。
两家工厂现有的 MHI 已达到使用寿命。它们需要大量的维护。此外,2016 年污水污泥焚烧最大可实现控制技术 (SSI MACT) 法规规定,一旦现有焚烧炉的维护和改造总累计成本超过焚烧炉原始购买成本的 50%,则该单元不再被视为“现有”并被视为“新”。根据 2016 年 SSI MACT 法规,“新”焚烧炉需要遵守更严格的空气排放要求。MSD 已确定,任何未来用于改进 MHI 的投资都可能导致它们被重新归类为“新”。因此,MSD 已决定用新的流化床焚烧炉 (FBI) 替换每个工厂现有的 MHI。
集中太阳能(CSP)和钙环(CAL)之间的整合正在考虑在可再生能源的大股份的角度考虑,以平滑不可匹配的能量输入的可变性。这项研究的范围是通过在适用于CAL-CSP集成的现实过程条件下在流化床中进行专门的实验运动来研究热化学能量储存(TCE)的CAL过程。通过测量沿迭代的钙化/碳化循环的Ca碳化程度,已经评估了基于石灰石的吸附剂的化学失活,这与转换选定阶段的物理化学炭化相关。经过审查的特性是层粒子的分布,块状密度以及床固体的粒径,密度和孔隙率。也评估了能源储能密度的可达到的值。实验运动的一个了不起的发现是在与二氧化硅砂一起加工时,石灰石的显着停用了。在过程温度下,CAO与二氧化硅砂成分的化学相互作用已被仔细检查,以造成反应性CAO对CO 2摄取的损失。颗粒密度数据的后处理以及N 2入口的孔隙法分析以及定量和定性XRD分析,这表明沙/石灰相互作用可促进总和反应性吸附的孔隙率的强烈降低,而反应性则是反应性的。基于密度的分类,用于评估碳化步骤后分离和未转化的石灰石颗粒,以提高过程效率的目的,通过避免通过工厂的未反应颗粒的流循环流循环。为此,在相关过程温度下每个反应步骤后,已经测量了钙化颗粒和碳酸颗粒的最小流体速度。
提高效率的燃烧方法:流化床燃烧 (FBC):在流化床锅炉中,煤粉(和其他燃料)悬浮在加压空气的喷射流上。流化床锅炉通常允许燃料在锅炉内停留的时间比其他锅炉长得多,从而确保燃烧更充分。此外,流化床锅炉的温度远低于传统锅炉(1400°F,而不是近 3,000°F),因此 NOx 的形成被最小化。此外,石灰石可以与燃料混合,与空气的混合使硫去除非常有效。煤气化:它通过将煤转化为气体,完全绕过了传统的煤燃烧过程。在整体气化联合循环 (IGCC) 系统中,蒸汽和热加压空气或氧气与煤结合,发生反应,迫使碳分子分离。产生的合成气,即一氧化碳、氢气、二氧化碳和水蒸气的混合物,随后被净化并在燃气轮机中燃烧以发电。由于 IGCC 发电厂产生两种形式的能量(来自气化过程的蒸汽和作为燃料的合成气),它们有可能达到 50% 的燃料效率。
出租 • 负压伤口治疗 • 神经肌肉刺激器 • 电动车辆 (POV) • 减压支撑面,包括: – 空气流化床 – 非电动高级减压床垫 – 电动空气浮选床(低气损疗法) – 电动减压床垫 • 推边激活动力辅助装置 • 所有 DME 物品的维修或更换,以及
煤炭 270.000 东米萨米斯省 2 x 135 MW 循环流化床燃煤火力发电厂 煤炭 FDC 米萨米斯电力公司(原:FDC 公用事业公司) PHIVIDEC 工业区,维拉纽瓦,东米萨米斯省 东米萨米斯省 X 270.000 2027 年 12 月 - 3 月 26 日 项目第一阶段 总体完成度:15.7%(建设中)
CGS和S-JET®流化床式喷气机可用于干磨。用于湿研磨,Zeta®,n eos或Zeta®RS搅拌器珠磨坊,具体取决于所需的目标细度。通过熔炉过程合成可以导致形成不希望的聚集物。为了将它们分开,通常在合成炉后使用CSM分类器磨机或CGS流化的床喷射磨机进行干燥分散体,而不会改变原始颗粒的原始大小和形状。
➔ Mirfa(阿联酋):海水淡化厂:2.93 亿欧元 ➔ Samsung/EPCOR(美国):废水处理系统:1.67 亿欧元 ➔ OxyChem(美国):盐水结晶系统:9,300 万欧元 ➔ Sembcorp Keppel(巴西):FPSO 海上钻井水处理:5,400 万欧元 ➔ City of St Louis Sewer District(美国):流化床焚烧炉:1.34 亿欧元 ➔ RNG Energy Linden(美国):厌氧消化处理:7,500 万欧元 ➔ Exxon Mobil Whiptail(美国):圭亚那脱硫厂:5,500 万欧元
涂料和封装技术PowderMet具有令人印象深刻的涂料和封装技术组合,以便提供通行器处理,以封装广泛的材料,并利用我们独特的流化床化学沉积(FBCVD)技术,以及我们的SOL-GEL和HIDELOMENEMENEMENTALLEMENEMENTALLEMENTALLEMENTALMENEMENTALLEMENTALMENTALLURGY PROCECTER。我们可以处理一系列小至100纳米的材料,但要保持受控的涂层厚度。Powdermet为各种材料平台的各种行业提供了研发和通行涂料服务。左侧的透射电子显微镜(TEM)图像显示了我们在该粒子整个表面上的封装的一致性(8.3 nm,足够小,其中10,000多个适合人毛的直径)。