我们提出了无模拟分数和流匹配([SF] 2 m),这是一种用于推断自随机动力学的无模拟Objective,给出了从任意源和目标分布中绘制的未配对样品。我们的方法一般 - 扩散模型训练中使用的得分匹配损失以及最近提出的流量匹配损耗用于训练连续归一化流量。[SF] 2 m将连续的随机构成建模为Schrödinger桥概率。它依赖于静态熵调查的最佳传输或Minibatch近似,以有效地学习SB,并使用模拟学习的随机过程。我们发现[SF] 2 m更有效,并且比先前的工作中基于仿真的方法为SB问题提供了更准确的解决方案。最后,我们将[SF] 2 m应用于快照数据学习细胞动力学的问题。值得注意的是,[SF] 2 m是在高维度中准确模拟细胞dynamics的第一种方法,并且可以从模拟数据中恢复已知的基因调节网络。我们的代码可在https://github.com/ atong01/conditional-flow-matching的TorchCFM软件包中找到。
摘要 心流是一种最佳或高峰体验状态,通常与专业和创造性表现有关。音乐家在演奏时经常体验到心流,然而,由于神经数据中存在大量伪影,这种难以捉摸的状态背后的神经机制仍未得到充分探索。在这里,我们通过关注心流体验后立即进入的静息状态来绕过这些问题。音乐家演奏了预期会可靠地引发心流状态的乐曲,并作为对照,演奏了不会引发心流的音乐作品。在心流状态之后,我们观察到上部 alpha(10-12 Hz)和 beta(15-30 Hz)波段的频谱功率更高,主要是在大脑前额叶区域。使用相位斜率指数进行的连接分析显示,右额叶簇影响了 θ(5 Hz)波段左颞叶和顶叶区域的活动,在报告高倾向性心流的音乐家中尤其明显。前顶叶控制网络内的 θ 波段连接促进了认知控制和目标导向注意力,这对于实现心流状态可能至关重要。这些结果揭示了与音乐家的即时心流后状态相关的大规模振荡相关性。重要的是,该框架有望在实验室环境中探索心流相关状态的神经基础,同时保持生态和内容有效性。
Appendix ............................................................................................................................................... 61-67
我们预见到可以在受量子纠错码 (QECC) 保护的量子比特流上搭载经典信息。为此,我们提出了一种通过故意引入噪声在量子流上发送经典比特序列的方法。这种噪声会引发一个受控的征兆序列,可以在不破坏量子叠加的情况下对其进行测量。然后可以使用这些征兆在量子流之上编码经典信息,从而实现多种可能的应用。具体而言,搭载量子流可以促进量子系统和网络的控制和注释。例如,考虑一个节点彼此交换量子信息的网络 [1-7]。除了用户数据之外,网络运行还需要同步模式、节点地址和路由参数等控制数据。在经典网络中,控制数据会消耗物理资源。例如,带内同步要求传输节点在数据流中插入特定模式的比特(消耗额外带宽)来分隔数据包,而接收节点则要求从传入的比特中搜索此类模式 [8]。然而,将量子比特作为控制数据插入对量子网络来说并不是一个可行的选择,因为测量会破坏量子态叠加 [9]。出于这个原因,一些研究断言量子网络将需要经典网络来实现带外信令和控制 [7]。另一方面,参考文献 [10-12] 开发了将经典比特和随机数(使用连续变量)一起传输以实现量子密钥分发 (QKD),以增强经典网络的安全性。相反,我们渴望将经典比特和量子比特(使用离散变量)一起传输,以控制量子网络。
由于核苷酸的杂环,核酸会吸收紫外线 (UV) 光;糖磷酸骨架对吸收没有贡献。DNA 和 RNA 的最大吸收波长均为 260nm (λmax = 260nm),每个碱基都有一个特征值。
本文回顾了肠道菌群对通过控制肠脑轴调节神经退行性疾病的影响。特定的微生物种群及其代谢产物(短链脂肪酸和色氨酸衍生物)调节神经蛋白膨胀,神经发生和神经屏障完整性。然后,我们讨论这些洞察力导致可能的干预措施的方法 - 益生菌,益生元,饮食改良和粪便微生物群移植(FMT)。我们还描述了哪些流行病学和临床研究已将某些微生物群与神经退行性疾病的课程相关联,以及这些如何影响基于微生物组的诊断和个性化治疗方案的建立。我们旨在指导与神经退行性疾病的关键联系的微生物生态研究,并通过针对微生物组相关的因素来强调管理神经健康健康的协作方法。
与年龄相关的黄斑变性干预视网膜色素上皮(RPE)细胞位于眼睛内的脉络膜和光感受器之间,对于从血液到棒和锥体提供营养至关重要,以及视觉循环的类维生素性至关重要。视力丧失和各种眼部疾病归因于RPE细胞的变性或功能障碍,导致失明。RPE功能障碍的主要眼部问题之一是黄斑变性。与年龄相关的黄斑变性(AMD)可以经常在60岁以上的患者中诊断出来。在AMD的早期阶段,某些症状可能不明显,但两只眼睛都会导致视力丧失。诱导的多能干细胞(IPSC)可以源自体细胞,并已用于再生医学中,取代了丢失或损坏的细胞。IPSC培养物可以从“患者匹配”中得出,因为这些细胞来自血液或皮肤细胞。 i计划研究如何保护RPE细胞免受缺氧,高血糖和促炎症的影响。 结果将提供有关在不同病理条件下RPE存活的分子途径的重要信息。 我们的长期目标是研究如何由于衰老而保护RPE免受功能障碍,并探索了一种新型方法,以保护干细胞衍生的RPE进行AMD移植以恢复视力并防止视力丧失。IPSC培养物可以从“患者匹配”中得出,因为这些细胞来自血液或皮肤细胞。i计划研究如何保护RPE细胞免受缺氧,高血糖和促炎症的影响。结果将提供有关在不同病理条件下RPE存活的分子途径的重要信息。我们的长期目标是研究如何由于衰老而保护RPE免受功能障碍,并探索了一种新型方法,以保护干细胞衍生的RPE进行AMD移植以恢复视力并防止视力丧失。