1化学研究所,Clermont Auvergne,CNRS,63000 Clermont-Ferrand,法国2沃尔夫森大气化学实验室。 Paris Cité, CNRS, LISA, 94010 Créteil, France 5 College of Engineering Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA 6 Institut de Combustion, Aérothermique, Réactivité Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, CEDEX 2, 45071Orléans,法国7大学Mohammed VI Polytechnic(UM6P),Lot 660,Hay Moulay Rachid Ben Guerir,43150,摩洛哥8大气化学观察和建模实验室,国家大气研究中心,P.O.。 Box 3000,Boulder,Co 80307,美国9化学学院,利兹大学,利兹大学,LS2 9JT,英国10号,英国10分校,德克萨斯大学,德克萨斯大学埃尔帕索大学,美国德克萨斯州埃尔帕索市,美国德克萨斯州埃尔帕索市11号,气候与能源系统11对于可持续系统,环境与可持续发展学院,密歇根大学,Ann Arbor MI 48109,美国 *这些作者同样为这项工作做出了贡献。1化学研究所,Clermont Auvergne,CNRS,63000 Clermont-Ferrand,法国2沃尔夫森大气化学实验室。 Paris Cité, CNRS, LISA, 94010 Créteil, France 5 College of Engineering Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA 6 Institut de Combustion, Aérothermique, Réactivité Environnement (ICARE), CNRS, 1C Avenue de la Recherche Scientifique, CEDEX 2, 45071Orléans,法国7大学Mohammed VI Polytechnic(UM6P),Lot 660,Hay Moulay Rachid Ben Guerir,43150,摩洛哥8大气化学观察和建模实验室,国家大气研究中心,P.O.。Box 3000,Boulder,Co 80307,美国9化学学院,利兹大学,利兹大学,LS2 9JT,英国10号,英国10分校,德克萨斯大学,德克萨斯大学埃尔帕索大学,美国德克萨斯州埃尔帕索市,美国德克萨斯州埃尔帕索市11号,气候与能源系统11对于可持续系统,环境与可持续发展学院,密歇根大学,Ann Arbor MI 48109,美国 *这些作者同样为这项工作做出了贡献。Box 3000,Boulder,Co 80307,美国9化学学院,利兹大学,利兹大学,LS2 9JT,英国10号,英国10分校,德克萨斯大学,德克萨斯大学埃尔帕索大学,美国德克萨斯州埃尔帕索市,美国德克萨斯州埃尔帕索市11号,气候与能源系统11对于可持续系统,环境与可持续发展学院,密歇根大学,Ann Arbor MI 48109,美国 *这些作者同样为这项工作做出了贡献。
摘要。与气候相关的研究需要有关平流层气溶胶分布的信息,这影响了地球大气的能量平衡。在这项工作中,我们提出了一个合并的垂直分辨率的平流层气溶胶灭绝系数,该数据使用来自六个肢体和掩盖卫星仪器的数据得出,该数据是在sage(平流层气雾剂和天然气实验)上ii(ERBS上的ERBS(地球预算卫星),GOMOS(GOLIATIAT BARVITIAND),GOMANNing(Global ozone contrime ozey formition)(Scy ozone formitions coptimentimy Imections)大气图表图)关于ODIN上的Envisat,Osiris(光谱仪和红外成像系统),在SUOMI NPP上的OPIN(Ozone Monitor Pro File Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite Suite suite suite suite suite suite npp)以及ISS(国际空间站)上的Sage III。通过气溶胶数据集从单个卫星仪器转换为相同的波长(750 nm),以及通过调节季节性周期来进行气溶胶纤维的合并。在这种均质化后,来自各个卫星仪器的数据非常同意。合并的气溶胶灭绝系数计算为单个仪器调整后数据的中位数。在750 nm处垂直分辨的每月平均气溶胶灭绝系数的合并时间序列以10°纬度箱为90°S至90°N,高度为8.5至39.5 km。平流层气溶胶光学深度(SAOD)的时间序列是通过从对流层到39.5 km的气溶胶灭绝率的整合而产生的;它也作为10°纬度箱中的每月平均数据提供。创建的气溶胶气候记录涵盖了1984年10月至2023年12月的这段时期,并打算将来扩展。The merged CREST aerosol dataset (v2) is available at https://doi.org/10.57707/fmib2share.dfe14351fd8548bcaca3c2956b17f665 (Sofieva et al., 2024a).可以在各种与气候有关的研究中使用。
Space42 PLC (ADX: SPACE42) 是一家总部位于阿联酋的人工智能太空技术公司,该公司整合了卫星通信、地理空间分析和人工智能功能,从太空探索地球。Space42 PLC 成立于 2024 年,由 Bayanat 和 Yahsat 成功合并而成,其全球影响力使其能够满足政府、企业和社区客户快速发展的需求。Space42 PLC 由两个业务部门组成:Yahsat 空间服务和 Bayanat 智能解决方案。Yahsat 空间服务部门专注于固定和移动卫星解决方案的上游卫星运营。Bayanat 智能解决方案部门将地理空间数据采集和处理与人工智能相结合,为决策提供信息,增强态势感知能力,提高运营效率。Space42 PLC 的主要股东包括 G42、Mubadala 和 IHC。
1大气层研究所,德国空气和空间中心(DLR),德国奥伯普法芬霍芬,2能源与气候研究所2:平流层(IEK -7),研究中心尤里奇,尤里奇,尤利希,尤利希,尤里希,尤里奇,3个大气层研究所,韦伯特尔,沃尔伯特的研究所3马德里的团结,马德里,西班牙,5 Karlsruhe技术研究所,气象学和气候研究所 - 大气痕量气体和遥感(IMK -ASF)(IMK- ASF),Karlsruhe,Karlsruhe,6地球和行星科学系,工程和应用科学院,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,美国,弗兰克,富有50名。 Main, Germany, 8 Jet Propulsion Laboratory (JPL), California Institute of Technology, Pasadena, CA, USA, 9 Laboratoire de Météorology Dynamique/IPSL, Ecole Polytechnique, Institut Polytechnique de Paris, ENS -PSL, CNRS, Paris, France, 10 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boarder, Co, Co, CHE,11化学科学系,地球系统研究实验室,NOAA,Boulder,Co,美国,地球,大气和行星科学系12
摘要:已广泛报道说,非沉积云中气雾剂浓度的增加会导致其液态水路的减少。在这里,我们检查了使用大涡模拟和机制抑制测试在亚热带和北极层云中驱动此反应的物理机制。先前已经确定了三个过程,以促进蒸发,沉积和辐射的尺寸依赖性,并且所有作用都可以调节边界层顶部的温暖,干燥空气的夹带率。我们发现,正如预期的那样,液体阻止路径的降低与夹带的增加相关,但是由于云辐射冷却的减少而增加了这种减少。即使在云顶部局部,辐射冷却速率也更强并有助于增强夹带,也可能发生云辐射冷却。我们发现,在这两种情况下,较慢的液滴沉淀都会导致夹带的夹带和液体水减少。更快的蒸发直接由较小,越来越多的液滴降低了液态水路路径,但不一定会增加夹带率。另一方面,直接由较小的液滴引起的更强的辐射云顶冷却会增加夹带,而较慢的沉积物确实会减少液态水路路径。通常,在北极的情况下,云顶部直接或直接增加辐射冷却的过程更为重要,在亚热带情况下,增加蒸发率的过程更为重要。
摘要:洪加加(Hunga Tonga)爆发后,注入平流层的水蒸气量是前所未有的,因此目前尚不清楚这可能对地面气候意味着什么。我们使用化学 - 气候模型模拟来评估类似于HTHH引起的平流层水蒸气(SWV)异常的长期表面影响,但忽略了喷发量相对较小的气溶胶载荷。模拟表明,SWV异常会导致北半球冬季的北半球陆地的强烈而持续的变暖,在喷发几年后,澳大利亚的澳大利亚冬季冷却,表明大型SWV强迫可以在衰老的时间尺度上产生表面影响。我们还强调,对SWV异常的表面响应比由于温室强迫而引起的简单变暖更为复杂,并且受到区域循环模式和云反馈等因素的影响。需要进一步的研究,以充分了解SWV异常的多年效应及其与Elniño(如南方振荡)等气候现象的关系。
摘要:气候模型代表热带风暴轨迹的能力对于提供有用的预测至关重要。在先前的工作中,发现北半球的热带风暴轨迹的表示已从耦合模型比较项目(CMIP)的第5阶段改善。在这里,我们通过将仅大气模拟(AMIP6)与历史库型模拟(CMIP6)进行了对比,从而研究了CMIP第6阶段模型中的剩余和持久偏差。对AMIP6和CMIP6模拟的比较表明,冬季跨北部Paci -fean的耦合模拟中海面温度(SST)的偏见改变了大气温度梯度,这与风暴轨迹的赤道偏置有关。在北大西洋中,旋风在耦合的模拟中没有足够的杆子传播,该模拟部分是由格陵兰岛南部的冷SST驱动的,从而减少了潜在的热量。在夏季,中亚和藏族高原的过度加热会降低当地的斜压性,导致更少的气旋形成并从中国东部传播到耦合和大气中的模拟物中。当规定SST时,耦合模型中描述的几种偏差大大减少。例如,北极风暴轨迹的赤道偏置显着减少。然而,在CMIP6和AMIP6中,其他偏见都显而易见(例如,夏季东亚的轨道密度密度和循环发生的持续降低)与其他过程有关(例如,土地表面温度)。
摘要。太阳辐射通过持续的SO 2来源的SO 2源到平流层(Strat-SRM)中被提议作为气候干预的一种选择。全球互动性气溶胶 - 化学 - 气候模型通常用于研究假设的Strat-SRM场景的潜在冷却效率和关联副作用。对与交互式平流层气溶胶组成 - 气候模型进行比较研究研究表明,对特定假定的压缩策略的建模气候反应取决于使用的气溶胶微物理方案(例如,模态或分段表示)沿侧宿主模型分辨率和运输。与短期火山相比,SO 2排放量,So Strat-SRM场景中的2个压力可能对微物理过程的数值实施(例如成核,凝结和凝结)构成更大的挑战。本研究探讨了如何改变时间步骤和测序,在截面气溶胶 - 化学 - 化学 - 气候模型SOCOL-AERV2(40个质量垃圾箱)中,如何通过5和25 tg(S)yr-1 yr-1
摘要。我们总结了与Strato-Spheric臭氧耗竭有关的当前重要且已建立的公开问题,并讨论了一些新出现的挑战。,由于蒙特利尔方案的持续成功,尽管最近生产受控物质以及未受控制的非常短暂的物质的影响,但由于蒙特利尔方案的持续成功,臭氧层正在从卤代源气体的影响中恢复。增大的温室气体浓度增加,例如二氧化碳,甲烷(CH 4)和一氧化二氮(N 2 O),具有不同的方式,以不同的方式扰动平流层臭氧的潜力很大,但是它们的未来发展以及其未来的演变以及因此不确定的。在最近的澳大利亚野生火灾后,已经观察到通过注射烟颗粒的臭氧耗竭。目前,通过出乎意料地从2022年从Hunga Tonga -Hunga Ha'apai火山注入大量水蒸气。开放的研究问题强调,在全球,高度分辨的观测中,平流层痕量气体和气溶胶的高度分辨观测中,要维护(如果不扩展)观察网络的关键需求。实际上,我们将在不久的将来对类似的野生火山和火山事件的平流层影响视而不见。复杂的地球系统模型(ESM)具有平流层作为重要组成部分。但是,这些模型的巨大计算需求不得导致对影响臭氧层的许多过程的过度简化。无论如何,更简单的过程模型的层次结构对于测试我们对臭氧层不断发展的理解并提供与政策相关的信息将继续很重要。