©2025晨星。保留所有权利。本文包含的信息,数据,分析和意见(“信息”):(1)包括晨星及其内容提供商的专有信息; (2)除非特别授权,否则不得复制或重新分配; (3)不构成投资建议; (4)仅出于信息目的而提供; (5)不保证完整,准确或及时; (6)可以从各种日期发布的数据中得出。晨星对与信息或使用相关的任何交易决策,损失或其他损失概不负责。在使用该信息之前,请验证所有信息,并且除非在专业财务顾问的建议下,不要做出任何投资决定。过去的表现不能保证未来的结果。投资获得的价值和收入可能会下降和UP。
骨髓功能(例如卡马西平,奥卡北西比,青霉素,氯霉素(不是局部),任何化学疗法方案,仓库抗精神病药)。氯氮平被告知:•其他具有镇静作用的药物,包括酒精•其他具有抗胆碱能或呼吸抑制作用的药物•其他具有降低QTC间隔的药物或已知的药物•rifampicin或苯乙甲肌蛋白 - 可能会降低氯化磷酸盐水平•CP4501A2 Induceers Youse Youse Youse Youse y Mige cpp4501A2 Induceers,尤其可能会尤为可能。 CP4501A2抑制剂,例如氟氟voxamine,酮康唑,红霉素,克拉霉素和环丙沙星,可能导致氯氮平水平升高。•CP4502D6抑制剂,例如氟西汀,帕罗西汀和Venlafaxine,可能会增加氯氮平水平。舍曲林可能在较小程度上做。这不是详尽的列表。有关更多信息,请参见BNF和SPC 1。
对随机和不规则抽样的时间序列进行建模是在广泛的应用中发现的一个具有挑战性的问题,尤其是在医学中。神经随机微分方程(神经SDE)是针对此问题的有吸引力的建模技术,它可以将SDE的漂移和扩散项与神经网络相关。但是,当前用于训练神经SDE的算法需要通过SDE动力学进行反向传播,从而极大地限制了它们的可扩展性和稳定性。为了解决这个问题,我们提出了轨迹流匹配(TFM),该轨迹以无模拟方式训练神经SDE,通过动力学绕过反向传播。TFM利用从生成建模到模型时间序列的流量匹配技术。在这项工作中,我们首先为TFM学习时间序列数据建立必要条件。接下来,我们提出了一个改善训练稳定性的重新聚集技巧。最后,我们将TFM适应了临床时间序列设置,从绝对性能和不确定性预测方面,在四个临床时间序列数据集上的性能提高了,这是在这种情况下的关键参数。
2022 年 7 月 13 日 尊敬的金伯利·D·博斯 (Kimberly D. Bose) 秘书 联邦能源管理委员会 华盛顿特区东北第一街 888 号 20426 主题:Southwest Power Pool, Inc.,案卷编号 ER22-________ 提交发电机互连协议 尊敬的博斯部长: 根据《联邦电力法》第 205 节、16 USC § 824d 和联邦能源管理委员会(“委员会”)法规第 35.13 节、18 CFR § 35.13,Southwest Power Pool, Inc.(“SPP”)提交了一份未执行的发电机互连协议(“GIA”),其中 SPP 作为输电提供商,Flat Ridge 5 Wind Energy LLC(“Flat Ridge”)作为互连客户,Evergy Kansas Central, Inc.(“Evergy”)作为输电所有者(“Flat Ridge GIA”)。 1 Flat Ridge GIA 符合 2022 年 1 月 15 日之前生效的 SPP 开放接入输电关税(“SPP 关税”)中的形式 GIA;2 但是,SPP 正在根据 Flat Ridge 的要求提交未执行的 Flat Ridge GIA。
高管摘要随着技术的发展,人们越来越依赖互联网。在线平台,例如搜索引擎,电子商务网站,社交媒体和按需服务已成为数百万人生的重要性。这些平台利用算法和机器学习通过自动决策(ADM)为用户提供个性化体验。尽管具有有效的性质,但与这些ADM相关的歧视和行为操纵仍然存在。本文的重点是欧盟的方法来解决在在线平台中使用ADM引起的歧视和操纵行为的方法。本论文的主要研究问题是:“目前的欧盟数据保护法律框架以及拟议的人工智能调节,足以解决在在线平台上使用的自动决策(ADM)引起的歧视和操纵行为?”要回答这个问题,论文依赖于书面研究。它主要分析一般数据保护法规(GDPR)和拟议的人工智能法(AIA),以解决法规的充分性,以防止在线平台上ADM引起的歧视和操纵行为。论文揭示了ADM是一种通过基于规则或机器学习算法等基本技术来自动化个人决策的系统。尽管ADM提供了有效的结果,但它有可能带有偏见,产生不准确的结果以及推断有关个人可能导致行为操纵和歧视的数据的数据。本论文区分了在线平台上有问题的行为操纵实践,发现在有问题的方面存在道德上可接受的操纵实践,包括个性化建议,例如利用个人脆弱性的个性化广告。对于歧视性实践,它突出了两个有问题的领域:基于受保护特征的歧视,例如种族和基于非保护特征的歧视,例如社会经济地位。论文研究了GDPR和AIA,并探讨了如何调节使用ADM引起的行为的歧视和操纵。GDPR通过禁令进行监管,并使个人有权获得信息和访问权利的权利。相比之下,AIA 专注于潜在技术,并调节其对个人的影响。 本文发现,不需要新的法规来解决在在线平台中使用的ADM引起的行为的歧视和操纵。 但是,它为GDPR和AIA提供了明确而全面的规则的建议。 对于GDPR,本文建议根据第22条第1款GDPR的ADM规则明确,并将最低保障措施加入第22(3)条GDPR以增加保护。 对于第13,14条和15 GDPR,对所使用的概念的清晰度以及在前委员会和事前信息之间有明确的区别,以包括以用户为中心的透明度。专注于潜在技术,并调节其对个人的影响。本文发现,不需要新的法规来解决在在线平台中使用的ADM引起的行为的歧视和操纵。但是,它为GDPR和AIA提供了明确而全面的规则的建议。对于GDPR,本文建议根据第22条第1款GDPR的ADM规则明确,并将最低保障措施加入第22(3)条GDPR以增加保护。对于第13,14条和15 GDPR,对所使用的概念的清晰度以及在前委员会和事前信息之间有明确的区别,以包括以用户为中心的透明度。对于AIA,有五个建议,其中包括一个明确的AI系统定义,该定义确认了基础技术,推荐系统的定义,添加了非常大的在线搜索引擎,以实现完整的在线平台表示,对重要的
我们研究了无限 - 奖励马尔可夫决策过程(MDP)的无模型增强学习(RL)算法,这更适合涉及不持续操作的应用不分为情节。与情节/折扣的MDP相反,对于平均奖励设置,对无模型RL算法的理解理解相对不足。在本文中,我们考虑使用模拟器的在线设置和设置。与现有结果相比,我们开发了具有计算高效的无模型算法,以备受遗憾/样本的复杂性。在在线设置中,我们基于降低方差降低Q学习的乐观变体设计算法,UCB-AVG。我们表明UCB- AVG达到了遗憾的束缚e O(S 5 A 2 SP(H ∗)√
一种集成工具,用于比较不同组成(单体,低聚物,杂膜复合物)的蛋白质,RNA和DNA的3D结构,以及成对和多扣比对。纸(外部站点):https://www.nature.com/articles/s41592-022-01585-1
合同条款依照陆上自卫队服务合同标准合同条款执行。 中标人将是我们根据所有项目的总金额(项目总数和金额总数)确定的估价范围内最低出价的竞标人。如果有两名或两名以上最低出价者有资格中标,则通过抽签方式确定中标者。 E) 合同的成立:合同或其他文件成立,是指当事人在合同或其他文件上签字、盖章的行为。其他情况,应当在中标时作出决定。 其他:参照《招标投标及合同指南》。 (3)无效投标 a) 不具备参加竞争所需资格的人员进行的投标或违反投标条件的投标; b) 违反“投标和签约指南”的投标; c) 投标金额、投标人名称和投标人印章难以区分的投标; d) 投标人的排除有组织犯罪的承诺是虚假的,或者违反了承诺; e) 投标迟于投标日期和时间提交,或者投标文件以邮寄等方式提交并在交付期限之后到达; f) 通过电报、电话或传真提交的投标 (4)合同等。如果中标金额加上消费税金额为 150 万日元或以上,则将准备这些。但是,金额在50万日元以上150万日元以下时,将开具发票,金额不足50万日元时,则无需开具发票。 (5)其他 a.如您希望参加投标,您必须提前通过传真或其他方式提交2022至2024财年资格审查结果通知副本,或者,如果您目前正在申请资格,则必须提交一份表明您已经申请的文件。 (一)委托代理投标的,应当在投标开始前提交委托代理委托书。 C)投标文件中必须注明不含税金额。 E. 允许通过邮寄等方式进行投标。但是,申请书必须于 2024 年 11 月 27 日(星期三)下午 5 点之前送达日本陆上自卫队航空学校宇都宫校会计部。 若省略印章,须填写负责人及承办人的姓名及联系方式。 (c)如初次投标已有邮寄投标人,则重新投标的时间安排如下: 日期和时间:2024 年 12 月 4 日星期三上午 11:30,宇都宫校区总部大楼 2 楼投标室。如果您希望通过邮寄方式参与重新投标,您的投标必须在 2024 年 12 月 3 日星期二下午 5:00 之前到达日本陆上自卫队宇都宫校区航空学校会计部。 (6)联系信息1360 Kamiyokota-Machi,UTSUNOMIYA,TOCHIGI 321-0106有关竞标和合同有关的事项,请联系UTSUNOMIYYA校园的Aviation School的会计部门,请与校园相关。部门。电话:028-658-2151(分机535)负责人:与规格有关的事项的Yomota,请联系UTSUNOMIYA校园,航空管理团队(Ext。304)负责人(OGAKI)的人(7)位置。信息(URL:https://www.mod.go.jp/gsdf/kitautunomiya/index.html)C。JGSDF采购信息→“直接单位合同信息”,utsunomiya campus(url:https:/ https:/ https://wwwwwwwwww.mod.go.mod.go.mod.jpf/gsdf/gsntm cch/g。
音频和视频流内容将通过优化的地面或无线技术,通过集中式或区域性数据中心从云端交付。数据中心的布局旨在为内容存储、搜索、数字版权管理和向数百万订阅者进行流媒体交付提供规模经济。通过数据中心传输的数字内容数量庞大且种类繁多,使提供商能够经济地支持个性化内容。消费者和提供商都从中受益。消费者可以随时随地获得他们最感兴趣的内容的最佳价值。提供商受益于获得对这些交付模式感兴趣的有利可图的社会人口统计数据。此外,提供商在消费者层面获得业务和营销分析信息,并完全了解所选内容的类型。提供商可以使用这些数据进行有针对性的广告投放、相关商品和服务的交叉营销以及开发一系列新服务。