摘要:随着锂离子电池的使用正在扩散,大型存储系统(固定存储容器等)中的事件或大型电池和电池存放(仓库,回收商等)。)经常会导致火灾定期发生。水仍然是解决此类电池事件的最有效的灭火剂之一,通常需要大量数量。由于电池包含各种潜在有害的成分(金属及其氧化物或盐,溶剂等)和热跑诱导的电池事件伴随着复杂且潜在的多稳态排放(同时包含气体和颗粒),应考虑并仔细评估火径流水对环境的潜在影响。本文提出的测试重点是分析用于在热失控下喷洒NMC锂离子模块的径流水的组成。强调,用于消防的水很容易含有许多金属,包括Ni,Mn,Co,Li和Al,与其他碳质物种(烟灰,油粉)混合,有时在电解质中使用的溶剂有时未沉积。与PNEC值相比,污染物浓度的外推表明,对于大规模事件,径流水可能对环境有可能危害。
基于多个电流水平下的增量容量峰值跟踪的锂离子电池 SoH 估算,用于在线应用 M. Maures a,* 、A. Capitaine a 、J.-Y. Delétage a 、J.-M. Vinassa a 、O. Briat aa Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, F-33400 Talence, 法国 摘要 本文提出了一种基于增量容量 (IC) 峰值跟踪的高 C 速率健康状态 (SoH) 诊断方法的扩展。使用一组经过不同老化协议的 11 个 NCA 锂离子电池。以 C/20、C/10、C/5 和 C/2 进行充电和放电循环,然后用于 IC 分析。给出并建模了 IC 峰值变化与 SoH 之间的相关性,并显示它们是所有测试 C 速率的准确估计量。 1. 简介 由于对新可再生能源解决方案的强劲需求,如交通运输领域的电动汽车 (EV) 和多电动飞机 (MEA),或能源领域的电网电池存储,锂离子电池市场正达到历史最高水平。与其他应用相比,这些系统中的电池将面临更为严酷的工作条件:更高的功率和更大的温度变化,这两者都会严重影响电池的退化 [1,2]。因此,有必要跟踪它们的健康状态 (SoH) 并确定何时达到其使用寿命(对于特定应用)。SoH 通常定义为电池在给定时间的最大容量与其初始最大容量之比 [3]。存在不同的估算方法来量化电池的 SoH [4]:基于容量或阻抗、使用弛豫电压或基于增量容量 (IC) 或差分电压 (DV) 曲线。IC 分析提供了有关电池内部退化模式的重要信息 [5,6],因为每个峰值都是电池内部材料相变的结果 [7]。然而,正因为如此,IC 曲线通常是通过非常缓慢的充电/放电获得的 [8,9],这限制了它们的实用性。尽管如此,还是有人提出了基于 IC 峰的几何特性来量化电池 SoH 的估算方法。特别是,[8,9] 表明特定 IC 峰和谷的位置与 SoH 之间存在线性相关性,而 [8] 也表明
水獭(lontra canadensis)是北美西部大多数河流系统的特有(Melquist等人2003),但不受管制的皮草诱捕和水质恶化导致了1900年代初期的大部分地区(Melquist等人)的灭绝(Melquist等2003,科罗拉多州野生动物部,2003年)。残余人口在怀俄明州西北部,主要在黄石国家公园中幸存。北美河流水獭种群的恢复主要是通过重新引入来实现的(Johnson和Berkley,1999; Melquist等,2003,Raesly,2001),在1970年代至1990年代(至1990年代)在科罗拉多州,内布拉斯加州和犹他州进行了几次(Colorado of Wildlife of Wildlife of Wildlife of Wildlife 2003,Williams 2011)。自从科罗拉多州和内布拉斯加州的重新引入以来,水獭已经扩展到两个州的许多流域(Depue和Ben-David 2010,Williams 2011)。
泰伯水坝 2993.0 3012.5 918,394 1,323,068 2979.74 -0.05 705,835 MM 76.9 0 0.0 克拉克峡谷水坝 5546.1 5560.4 174,300 251,435 5535.53 0.07 124,286 MM 71.3 0 0.0 峡谷渡口水坝 3797.0 3800.0 1,886,950 1,993,036 3784.31 -0.02 1,474,253 MM 78.1 0 0.0 博伊森水坝 4725.0 4732.2 741,594 892,226 4712.99 -0.03 535,409 MM 72.2 0 0.0 布法罗比尔大坝* 5393.5 -- 646,565 -- 5355.96 0.01 374,092 MM 57.9 -- -- 黄尾鱼大坝 3640.0 3657.0 1,011,052 1,263,682 3627.55 -0.13 874,467 MM 86.5 0 0.0 詹姆斯敦大坝 1431.0 1454.0 30,488 220,990 1429.19 0.01 26,543 MM 87.1 0 0.0 哈特布特大坝 2064.5 2094.5 67,142 214,169 2060.52 0.05 54,697 MM 81.5 0 0.0 Keyhole 大坝 4099.3 4111.5 188,671 329,134 4089.48 0.00 112,468 MM 59.6 0 0.0 Pactola 大坝 4580.2 4621.5 55,975 99,038 4569.21 -0.07 47,133 MM 84.2 0 0.0 Shadehill 大坝 2272.0 2302.0 120,172 350,176 2262.66 -0.03 79,224 MM 65.9 0 0.0 格伦多大坝 4635.0 4653.0 492,022 763,039 4604.93 M 214,485 MM 43.6 0 0.0 兵团支流项目
泰伯水坝 2993.0 3012.5 918,394 1,323,068 2979.79 -0.03 706,524 128 406 76.9 0 0.0 克拉克峡谷水坝 5546.1 5560.4 174,300 251,435 5535.46 0.06 123,986 179 50 71.1 0 0.0 峡谷渡口水坝 3797.0 3800.0 1,886,950 1,993,036 3784.33 -0.03 1,474,864 3,162 3,162 78.2 0 0.0 博伊森水坝 4725.0 4732.2 741,594 892,226 4713.02 -0.05 535,851 552 701 72.3 0 0.0 布法罗比尔水坝* 5393.5 -- 646,565 -- 5355.95 -0.05 373,965 7 198 57.8 -- -- 黄尾鱼水坝 3640.0 3657.0 1,011,052 1,263,682 3627.68 -0.13 875,586 1,492 2,105 86.6 0 0.0 詹姆斯敦水坝 1431.0 1454.0 30,488 220,990 1429.18 0.01 26,523 23 13 87.0 0 0.0 Heart Butte 大坝 2064.5 2094.5 67,142 214,169 2060.47 -0.03 54,550 -47 10 81.2 0 0.0 Keyhole 大坝 4099.3 4111.5 188,671 329,134 4089.48 -0.01 112,468 0 0 59.6 0 0.0 Pactola 大坝 4580.2 4621.5 55,975 99,038 4569.28 -0.05 47,186 9 32 84.3 0 0.0 Shadehill 大坝2272.0 2302.0 120,172 350,176 2262.69 0.00 79,335 19 19 66.0 0 0.0 Glendo 大坝 4635.0 4653.0 492,022 763,039 MMMMMMMM 军团支流项目
Titiwangsa湖花园位于吉隆坡东北部旁边的贾兰·敦·拉扎克(Jalan Tun Razak)旁边,是一个著名的休闲公园,以其家庭友好的氛围而闻名,是城市居民的受欢迎的聚会地点。占地46.13公顷(114英亩),中间有一个大型人造湖。它还具有许多户外功能,例如网球场,水上运动,慢跑,步行和骑自行车路线,运动区和浮动咖啡馆。著名的地点,例如国家剧院(Istana Budaya),佛经舞蹈剧院,国家美术馆,国家图书馆和Nelayan餐厅,也都靠近公园。该地点的高水平人类活动有可能对生态系统中生物的分布和丰富性产生重大影响。1
气象局对Sofala的Turon河进行了季节性流动预测,该河流排入墨水河大坝(请参见下图)。这提供了潜在存储流入的指示。从2024年8月至10月10日,总流量的大多数预测分位数低于历史流量,这表明在此期间,干燥流入的可能性低于历史流入。下面显示了从8月至2024年10月的图表,可以在以下方面找到更新:季节性水流预测:水信息:气象局(bom.gov.au)
博士职位:使用基于过程的冷冻流水学建模山脉设计气候变化适应策略,通常被称为水文周期的“水塔”,将水储存为雪,冰和地下水,逐渐将其释放到溪流中。最近的观察结果表明,山区的地下水和溪流动态的长期变化归因于气候变化引起的冰冻圈的修饰(雪干,冰川融化和永久冻土解冻)。鉴于这些变化对自然和社会生态系统服务产生重大影响,至关重要的是,为高山利益相关者提供对未来水的可用性的预测来设计可持续的适应策略。项目概述:博士项目是欧洲Interreg Alpine太空项目WaterWise的一部分,该项目旨在为阿尔卑斯山的可持续水管理策略提供指导。这个特定的博士学位项目将着重于开发和部署社会 - 晶状体 - 透明质学建模框架,以预测源水的未来水和测试水管理策略。关键职责包括:
摘要:随着锂离子电池的使用正在扩散,大型存储系统(固定存储容器等)中的事件或大型电池和电池存放(仓库,回收商等)。)经常会导致火灾定期发生。水仍然是解决此类电池事件的最有效的灭火剂之一,通常需要大量数量。由于电池包含各种潜在有害的成分(金属及其氧化物或盐,溶剂等)和热跑诱导的电池事件伴随着复杂且潜在的多稳态排放(同时包含气体和颗粒),应考虑并仔细评估火径流水对环境的潜在影响。本文提出的测试重点是分析用于在热失控下喷洒NMC锂离子模块的径流水的组成。强调,用于消防的水很容易含有许多金属,包括Ni,Mn,Co,Li和Al,与其他碳质物种(烟灰,油粉)混合,有时在电解质中使用的溶剂有时未沉积。与PNEC值相比,污染物浓度的外推表明,对于大规模事件,径流水可能对环境有可能危害。