摘要:通过不同的作用机制对癌症进行化学/基因治疗的组合已经出现,以增强癌症的治疗功效,并且由于缺乏高效和生物相容性的纳米载体,仍然仍然是一项具有挑战性的任务。在这项工作中,我们报告了一种新的纳米系统,基于两亲性磷齿状(1-C12G1)胶束胶束,以用于三层microRNA-21抑制剂(miR-21i)和阿霉素(DOX)(DOX),用于三重阴性乳腺癌的联合治疗。制备了长线性烷基链和十个质子化吡咯烷表面基的两亲磷齿状树状,并证明在水溶液中形成胶束,并具有103.2 nm的水动力大小。胶束被证明是稳定的,能够封装具有最佳负载含量(80%)和封装效率(98%)的抗癌药物DOX,并且可以压缩miR-21i以形成双流线物以使其具有良好的稳定性,以抗退化。1-C12G1@dox/miR-21i流媒体的共传递系统具有pH依赖性的DOX释放曲线,并且可以很容易被癌细胞吞噬以抑制它们,因为它们在静脉内静脉内注射后被进一步验证,该抗癌机构得到了进一步验证,以处理静脉内的三重乳液模型。具有在研究剂量下经过验证的生物相容性,可以开发出开发的两亲性磷状胶束,以作为一种有效的纳米医学制剂,用于协同癌症治疗。
课程描述本课程提供了一个独特的机会,可以探索机器学习如何重塑医疗保健和生物医学的景观。拥有大量的医疗保健数据以及医疗挑战的复杂性,机器学习和医疗保健的融合从未有过更多的相关性,为增强患者护理,加速药物发现并释放了对人类健康的更深入了解的激动人心的机会。这是一个关键时刻,机器学习算法和数据驱动的见解正在为更美好,更健康的未来铺平道路。本课程旨在针对对机器学习概念有基本理解并热衷于应对重大医疗保健和生物医学挑战的学生。在本课程中,我们将在简化药物发现,临床试验,疾病诊断和精密医学的流线中剖析机器学习应用。通过分析尖端研究,专家的客座讲师以及从事团队项目的工作,学生将对机器学习如何改变医疗保健和生物医学有一定的了解。学习目标和成果学生将对医疗保健和生物医学中当前的计算挑战以及机器学习算法的设计进行全面了解,以应对这些挑战。本课程将使学生具备精通研究,审查和本研究论文的技能。此外,学生将学习如何在医疗保健生物医学领域进行机器学习研究并应对挑战。先决条件: - 共同条件(S): - 并发入学: - 建议准备:CSCI 567或DSCI 552或其他研究生级的机器学习课程,或熟悉机器学习。
在高强度和高能量山脉中,例如CERN大型强子对撞机(LHC)及其未来的高发光升级,在不同相互作用点周围的两个梁之间的相互作用施加了机器性能的限制。实际上,它们的作用降低了光束寿命,因此,对撞机的光度达到了。这些相互作用称为梁束长距离(BBLR)相互作用,并且在2000年代初首次提出了使用直流线来缓解其效果。目前正在研究该解决方案,以作为增强HL-LHC性能的选项。在2017年和2018年,LHC已安装了四个电线补偿器的示威者。 随后进行了为期2年的实验活动,以验证减轻LHC中BBLR相互作用的可能性。 在此活动中,概念证明完成并激发了一组其他实验,成功地证明了BBLR相互作用在光束条件下与操作配置兼容的效果。 本文详细报告了实验活动的准备,包括相应的跟踪模拟和获得的结果,并为未来提供了一些观点。在2017年和2018年,LHC已安装了四个电线补偿器的示威者。随后进行了为期2年的实验活动,以验证减轻LHC中BBLR相互作用的可能性。在此活动中,概念证明完成并激发了一组其他实验,成功地证明了BBLR相互作用在光束条件下与操作配置兼容的效果。本文详细报告了实验活动的准备,包括相应的跟踪模拟和获得的结果,并为未来提供了一些观点。
第一学期 AS 1010 航空航天工程概论 2 0 0 2 航空航天和航天飞行的历史;飞机和航天器的分类;飞机和航天器主要部件的功能;航空航天工程的细分;空气动力学、推进、结构、系统、飞行力学和控制要素。印度航空航天活动。 第三学期 AS 1020 流体力学 3 1 0 4 流体力学简史,流体及其性质,粘度、热导率、质量扩散率、压缩性和表面张力的概念,其分子考虑。流体静力学 - 压力中心、浮力中心和元中心,ISA。张量微积分(笛卡尔张量)。描述流体运动的欧拉和拉格朗日方法、流线、条纹线和路径线。流体运动学 - 平移、旋转和变形、循环、格林斯托克斯定理。推导微分和积分形式的质量、动量和能量控制方程及其对无粘性和势流的特殊化。非惯性系中的方程。伯努利方程。一维流动。各种情况下的说明性示例。层流,例如库埃特流和哈根-泊肃叶流,轴承和边界层中的流动。量纲分析平板和管道中的粘性流 - 过渡、湍流、管道中的表面摩擦和损耗 AS 2010 材料基础强度 3 1 0 4 应力和应变简介 - 胡克定律、应力和应变变换、主应力和应变 - 圆形截面的扭转 - 薄壁压力容器 - 对称截面梁的弯曲和剪切应力 - 用各种方法计算静定梁的挠度 - 组合载荷引起的应力、失效理论。弹性理论简介、场方程、艾里应力函数、笛卡尔坐标中的二维问题、厚圆柱体的拉梅解。
在人类连接组计划的带动下,具有超高梯度强度的扫描仪的开发显著提高了体内扩散 MRI 采集的空间、角度和扩散分辨率。可以利用改进的数据质量来更准确地推断微观结构和宏观结构解剖结构。然而,这种高质量的数据只能在全世界少数几台 Connectom MRI 扫描仪上采集,而且由于硬件和扫描时间的限制,在临床环境中仍然无法使用。在本研究中,我们首先更新了基于纤维束成像的手动注释主要白质通路的经典协议,以使其适应当今最先进的扩散 MRI 数据所能产生的更大体积和更大变化的流线。然后,我们使用这些协议手动注释来自 Connectom 扫描仪的数据中的 42 条主要通路。最后,我们表明,当我们使用这些手动注释的通路作为具有解剖邻域先验的全局概率纤维束成像的训练数据时,我们可以在质量低得多、更广泛可用的弥散 MRI 数据中对相同的通路进行高精度、自动重建。这项工作的成果包括来自 Connectom 数据的 WM 通路的全新综合图谱,以及我们的纤维束成像工具箱的更新版本,即受基础解剖学约束的 TRActs (TRACULA),该工具箱使用该图谱中的数据进行训练。图谱和 TRACULA 均作为 FreeSurfer 的一部分公开分发。我们首次全面比较了 TRACULA 与更传统的多感兴趣区域自动纤维束成像方法,并首次演示了在高质量 Connectom 数据上训练 TRACULA 以造福使用更温和的采集协议的研究。
背景:跌倒在多发性硬化症(MS)的人中很常见,造成伤害,害怕跌倒和失去独立性。尽管有针对性的干预措施(物理疗法)可以帮助您,但患者不足和临床医生不处理此问题。患者生成的数据,结合临床数据,可以支持跌倒的预测并及时干预(包括转介到专门的物理疗法)。要采取行动,必须有效地将此类数据交付给临床医生,并在患者的特定情况下进行量身定制。目的:本研究旨在描述多发性硬化症的设计和开发的迭代过程,以识别该闭环应用程序的临床和技术特征,旨在支持流线的跌倒报告,及时的跌倒评估,以及全面的跌倒评估,以及全面的和持续的跌倒预防工作。方法:利益相关者从事以人为本的设计的双钻石过程,以确保与用户需求保持一致的技术功能。患者和临床医生的访谈旨在使用能力,机会,动机和行为(COM-B)框架来引起对能力阻滞剂和助推器的见解,以促进随后的映射到行为改变车轮。为了支持普遍性,与跌倒有关的其他临床状况(老年,骨科和帕金森氏病)的患者和专家也参与其中。根据每一轮反馈迭代设计,并在常规临床访问期间测试了最终模型。结果:30名患者和14名临床医生的样本至少提供了1轮反馈。为了支持跌倒报告,患者赞成使用REDCAP(研究电子数据捕获; Vanderbilt University)建造的简单每两周调查,以支持带有自己的设备可访问性 - 具有可选的附加背景(跌倒的严重性和位置)。为了支持对瀑布的评估和预防,临床医生喜欢一个临床仪表板,其中有几个关键的可视化小部件:纵向瀑布
每个器官有两个相邻的容器模型,容器之间由毛细管(壁)膜隔开。这是一个集中系统模型,不考虑膜以外的质量传递阻力。该模型的第一个改进是克罗格圆柱体。[4] 毛细血管簇形成毛细管网络。研究人员使用细胞模型,将单位或细胞(在本例中为毛细管)与集合隔离开来。克罗格圆柱体 [4] 表示细胞和分布式系统,可提供更多信息,例如溶质渗透到血管外组织的程度。鉴于克罗格绘制的包括毛细血管在内的血管草图[4],他只能使用圆柱形模型(如图1所示)。此后,出现了其他更像网络的草图,但克罗格圆柱体仍可用作细胞。值得注意的是,在流经填料床时,Happel 的细胞模型 [5 ] 对于组成填料床的每个球体都非常适用,适用于整个系统。Pfeffer 将这种流体流动模型扩展到质量传递。[6 ] 与 Happel 的模型 [4 ] 类似,其中添加单元来表示填料床,假设 Krogh 圆柱体平行添加以组成器官。Brinkman 方程用于求解血管外组织中的流动。由于这些方程的线性,因此可以获得解析解,从而避免使用数值方法求解它们,因为这些方程非常僵硬。[7 ] 比率 ffiffiffi kp = L 非常小,其中 k 是血管外组织的渗透率,L 是毛细管的长度。已有许多关于 Krogh 圆柱体中的质量传递研究报告。 [8-14]然而,研究人员几乎从未考虑过血管外组织中流动的影响,也从未考虑过流场和浓度场的二维性。此前,我们曾考虑过 Krogh 圆柱中的流动,[7]其中血管外组织中的流动使用 Brinkman 方程建模,该方程允许流线弯曲和/或流动在横向具有空间变化。然而,我们几乎没有发现任何流动从小动脉末端离开毛细血管,又从小静脉末端返回,就像 Guyton 和 Hall 所建议的那样。[15]原因是图 1 中的血浆有两条平行的路径
细胞外囊泡(EV)由于能够富集体液中蛋白质生物标志物的能力而具有巨大的诊断应用潜力。但是,从复杂的生物标本中隔离电动汽车的挑战阻碍了它们的广泛使用。在这种情况下,集成的隔离和分析工作流程代表了首选策略,主要基于免疫亲和力方法。尽管如此,EV的高异质性限制了它们的使用,因为拟议的无处不在标记的同质性不及人们所想象的,这引起了人们对下游生物标志物发现计划的可靠性的担忧。此外,这设定了敏感性的挑战,以检测到低到非常低的丰富疾病特异性亚人群。此问题扩展到了工程EV-Mimetics和Bio-Nanoparpicles的越来越多的领域,在这种情况下,传统的免疫亲和力方法可能缺乏适用性。解决这些挑战时,我们介绍了膜传感肽(MSP)作为EVS和EV-ANALOGUES的“通用”亲和力配体。所提出的MSP探针对不稳定起作用,因为它们能够与具有高膜曲率和磷脂双层的纳米颗粒结合,而由于表达表面抗原的不同而没有任何偏差。通过单分子阵列(SIMOA)技术采用流线过程集成在孔捕获和囊泡表型中,我们展示了MSP配体在血液衍生物(血清和Plasma)中循环EV的综合分析中的应用,从而消除了对先前的EV隔离的需求。总的来说,这些应用突出了MSP在推进临床诊断及其他地区的EV分析中的潜力。证明了MSP技术的可能临床翻译,我们直接检测到血清和血浆样品中与EV相关的表位特征,这证明了其可能区分心肌梗塞与稳定心绞痛患者的潜力。终于,尤其是MSP表现出独特的能力,可以使四叠蛋白含红细胞衍生的EV(RBC-EV)分析。,这也代表了SIMOA技术中有史以来的第一个基于肽的应用。
上下文。cometary子流线小径存在于彗星附近,形成了星际尘埃云的细胞结构。这些步道主要由最大的彗星颗粒组成(大小约为0.1 mm – 1 cm),它们以低速弹出,并保持非常接近彗星轨道,以围绕太阳的几次旋转。在1970年代,向内部太阳系推出了两个Helios航天器。航天器配备了原位灰尘传感器,该传感器第一次测量了内部太阳系中星际尘埃的分布。最近,当重新分析HELIOS数据时,发现了七个影响的聚类,由Helios在非常狭窄的空间区域中检测到,真正的异常角度为135±1°,作者认为这是潜在的cometary Trail颗粒。但是,当时无法进一步研究该假设。目标。我们在Helios Dust Data中重新分析了这些候选彗星径向粒子,以调查某些或全部确实起源于彗星步道的可能性,并且我们限制了它们的源彗星。方法。空间模型中用于探索的星际探索(IMEX)尘埃流是一种新的且最近发布的通用模型,用于内部太阳系中的彗星气星流。我们使用IMEX研究Helios制作的彗星径的遍历。结果。在太阳周围的十革命中,Helios航天器与13条彗星小径相交。在大多数遍历中,预测的灰尘频量非常低。结论。在Helios检测到候选粉尘颗粒的狭窄空间区域中,航天器反复穿越45p/Honda-Mrkos-Pajdušáková彗星的步道,并具有72p/Denning-fujikawa,具有相对较高的预测粉尘。对检测时间和粒子冲击方向的分析表明,四个检测到的粒子与这两个彗星的来源兼容。通过组合测量和模拟,我们在这些小径中发现了尘埃空间密度,约为10-8 –10-7 m -3。在较狭窄的空间区域中,径向遍历的聚类构成了Helios数据中潜在的彗星径向颗粒的识别。基于航天器的尘埃分析仪可以将其追溯到其源体的现场检测和分析,为对彗星和小行星的远程组成分析提供了一个新的机会,而无需将航天器吹入甚至降落在这些天体上。这为命运 +(例如,与Phaethon Flyby and Dust Science的空间技术的示范和实验),Europa Clipper以及星际映射和加速探针提供了新的科学机会。
平整计划审查清单 申请编号: APN: 提供的计划是否满足以下要求?: 是 否 不适用 要求的最小纸张尺寸:24 英寸 x 36 英寸 所有纸张必须清晰易读 - 必须可在电子文件中复制 项目名称 - 右下角的物业地址和申请编号 工程师的姓名、地址、电话号码和电子邮件 工程师的原始印章、签名、日期和到期日期 修订框 附近地图和纸张关键地图 图例标识 CC 批准的标准符号和缩写 指北箭头和杆比例(每张纸上)1” = 40' 最小高程基准(需要 NAVD88)和基准 物业线 场地的法律描述,包括评估员的地块编号 现有和拟议的地役权和宽度 通行权线、街道宽度、站点、坡度 街道名称(公共或私人)、实体管辖边界 街道的现有状况。现有和拟建的铺装/碎石/未改良轮廓必须延伸至产权线外 100 英尺,或显示现有相邻改良,以及现有坡度和现有楼面标高 点标高、排水箭头、流线标高和坡度折点 所有建筑角落的垫块标高或完工坡度 拟建的完工楼面标高,整数加两位小数 (0000.00),高于中心线或路缘顶部 18 英寸,以较大者为准 区域 A、AE、AH、AO 中的基准洪水标高,参考 FIS 或经批准的排水研究。如果场地受到洪水区的影响,则需要进行排水研究。洪水区域范围、洪水区域注释参考 FIRM 面板、系列和日期所有地块角落和地块边界处的高程路缘顶部或路面边缘,以及地块边界和/或地块边界延长处的拱顶高程拟议的商业车道位置和高程拟议的挡土墙,包括基础顶部和墙顶高程挡土墙的详细信息,显示挡土墙的最大总高度。墙和屏风墙 围栏/砌块墙和护堤(现有和拟议)的细节 防洪墙和地基的细节 排水沟的细节 砌块墙开口的细节,用于排水(现有和拟议) 其他第 30 章要求 契约限制(与土地一起使用的限制性契约) 带地下室的结构必须显示: 所有通往地下室的开口 地下室装修地板 主楼层装修地板 窗井顶部/窗户底部(如果没有井)的标高 窗井顶部必须与主楼层装修标高相匹配 所有地下室开口均有正向排水