EX.2, 1.Elsctrsd@ a d -3'%av;a Ckgtmetry ZX。2.2、$能力Coarsidaratj6m~
摘要:复杂通风系统的开发过程与建模、设计、执行和测试阶段相关。每个步骤都需要使用能够确定流动基本参数的测量设备。在校准用于测量流速的仪器的过程中,限制之一是位于风洞测试段的校准设备的尺寸。这与校准风速计附近的流动条件变化有关,这是由阻塞效应引起的。与风洞测试段的横截面积相比,尺寸较大的仪器可能会对标准指示的参考速度产生影响。在这种情况下,校准结果可能会受到额外系统误差的影响。本文使用校准实验室的真实案例和常用传感器对这种影响进行了研究。还研究了不同类型的空气速度传感器对测量标准区域速度曲线的影响。此外,还描述了阻塞效应的区域。所得结果表明,由于流动阻塞效应的最小化,可以正确放置测量标准。
开发更高效、更具成本效益的海水淡化技术对于充分发挥海水淡化能力应对淡水短缺的巨大挑战至关重要。海水淡化液流电池是一种新兴的电化学装置,能够集成储能和海水淡化功能,是一种很有前途的可扩展且经济高效的海水淡化电化学技术。在此,我们报告了流速对甲基紫精/亚铁氰化钠 (MV/Na 4 [Fe(CN) 6 ]) 海水淡化液流电池 (DSRFB) 性能的影响。研究发现,增加流速可以降低电池电阻并提高能量效率、功率密度和海水淡化效率。具体而言,当流速从 20 mL/min 增加到 60 mL/min 时,MV/Na 4 [Fe(CN) 6 ] DSRFB 的能量效率从 56% 增加到 64%,功率密度从 14.72 mW/cm 2 增加到 15.33 mW/cm 2 。更重要的是,DSRFB 的脱盐率从 20 mL/min 时的 86.9% 提高到 60 mL/min 时的 93.9%。© 2021 Elsevier Ltd. 保留所有权利。
粉末流速是定向能量沉积 (DED) 工艺中的一个关键参数。在典型的构建过程中,如果粉末流速仅降低 1 秒,就会影响 30 毫米的熔体轨迹。因此,即使粉末流速发生微小变化也会对构建质量产生重大影响。在这项工作中,使用离线重量测量、流动成像、现场构建数据和同轴熔池成像等多种方法量化了不同类型 316 L 钢粉末的粉末流稳定性。观察到流速振荡,与粉末料斗转盘旋转的周期性相关,其幅度足以对构建质量造成影响并可在同轴熔池成像中识别。讨论了流速变化对使用熔池成像进行闭环控制的影响。
方法和结果:共有 1,683 名有缺血症状/体征且血管造影显示冠状动脉畅通(血管造影狭窄 <40%)的患者接受了冠状动脉血管运动评估。CFVR 以 LAD 中的充血/静息平均速度来测量。用定量血管造影测量 LAD 中段直径,并计算静息 CBF(rCBF)和充血(hCBF)。静息微血管阻力(rMR)以平均动脉压/rCBF 来计算。在所有患者中,1,096 名(65%)为女性,平均年龄为 51 [42, 59] 岁。与男性相比,女性的中位 CFVR 较低(2.7 [2.4, 3.2] vs 3.1 [2.7, 3.6],p<0.001),rCBF 较高(49.7 [34.0, 71.1] vs 45.9 [31.8, 68.7] ml/min,p=0.04),hCBF 较低(139.5 [93.0, 195.2] vs 147.1 [95.7, 218.6] ml/min,p=0.02),但 rMR 相似(p=0.82)。女性是 CFVR 较低、rCBF 较高和 hCBF 较低的独立预测因素。
流速压降 流速压降 流速压降 流速压降 流速压降 流速压降 流速压降 流速压降 流速压降 流速压降 GPM 英尺 ∆ L/s 千帕 GPM 英尺 ∆ L/s 千帕 GPM 英尺 ∆ L/s 千帕 GPM 英尺 ∆ L/s 千帕 MB/MW 500 43.5 0.55 2.7 1.6 34.8 0.36 2.2 1.1 - - - - - - - - MB/MW 750 65.3 1.63 4.1 4.8 52.2 1.08 3.3 3.2 43.5 0.77 2.7 2.3 37.3 0.58 2.4 1.7 MB/MW 1000 87.0 3.59 5.5 10.6 69.6 2.37 4.4 7.0 58.0 1.69 3.7 5.0 49.7 1.27 3.1 3.8 MB/MW 1250 108.8 2.21 6.9 6.5 87.0 1.46 5.5 4.3 72.5 1.04 4.6 3.1 62.1 0.78 3.9 2.3 MB/MW 1500 130.5 3.73 8.2 11.0 104.4 2.46 6.6 7.3 87.0 1.76 5.5 5.2 74.6 1.32 4.7 3.9 MB/MW 1750 - - - - 121.8 3.84 7.7 11.3 101.5 2.74 6.4 8.1 87.0 2.06 5.5 6.1 MB/MW 2000 - - - - 139.2 5.63 8.8 16.6 116.0 4.01 7.3 11.8 99.4 3.02 6.3 8.9
来自恒定水头源的流量被输送到皮托管的静压端口和总水头端口。此流量在操作期间提供对皮托管的连续反冲洗。反冲洗是必要的,以保持皮托管和连接管内已知密度的流体(或在这种情况下为固体水)。用于反冲洗的恒定水头供应压力必须大于流量中要测量的最大预期速度水头。背压由压力调节计设定。每个端口的反冲洗流速由低流量转子流量计控制。通过实验室测试,选择了空气中 3.79 1/hr 的反冲洗流速。此流速是可以通过的最小流速,并且仍可在空气中产生从皮托管端口连续流出。7.57 和 11.36 1/小时的反冲洗流速也产生了良好的结果;然而,较低的流速提供了更好的仪器低端灵敏度。
推力 = 通过风扇管道的空气质量流速 (V jb – V a ) + 通过核心发动机的空气质量流速 (V je – V a )