最低的色散,快速和精确的梯度以及高度可再现的流速和保留时间使1290 Infinity III LC系统您的最佳前端三倍四倍体和(q-)TOF检测。这些LC/MS系统非常适合对药物杂质和代谢产物,食品安全,环境污染物以及法医/毒理学的高度特异性和超敏分析。
读数选择流程读取类型,以符合体积的“ VOL”或标准化的“ STD”。体积流是在环境温度和压力下的实际流量,而标准的流量表示在特定温度和压力下的流速。标准化PER确保设置为760 mmHg Whearas标准化温度的默认值是在“单位”子菜单中“ std to”中设置的用户可设置值。
摘要:激光金属沉积 (LMD) 工艺是一种增材制造方法,通过激光束与气体/粉末流的相互作用生成 3D 结构。流径、表面密度和焦平面位置会影响沉积轨迹的尺寸、效率和规律性。因此,准确了解气体/粉末流特性对于控制工艺和提高其在工业应用中的可靠性和可重复性至关重要。本文提出了多种实验技术,如气压测量、光学和称重方法,以分析气体和粒子速度、粉末流直径、其焦平面位置和密度。这是针对三种喷嘴设计和多种气体和粉末流速条件进行的。结果表明:(1) 粒子流遵循高斯分布,而气体速度场更接近于平顶分布;(2) 轴向、载体和整形气流显著影响粉末流的焦平面位置;(3) 只有整形气体、粉末流速和喷嘴设计会影响粉末流直径。然后对三个喷嘴分别进行具有 RANS 湍流模型的气体和粉末流的 2D 轴对称模型,结果显示与实验结果具有良好的一致性,但压力测量对气体速度的估计过高。
人工智能在化学工程中的主要应用之一是工艺优化。化学工艺通常很复杂,涉及多个变量,需要不断调整才能实现最高效率。人工智能算法可以分析来自传感器的实时数据并进行调整以优化温度、压力和流速等各种参数。这不仅可以提高生产效率,还可以减少能源消耗和废物产生。
PCO.PANDA 26 SCMOS传感器的出色全球快门功能使其成为有效双成像的理想候选者 - 在流量分析中执行所有类型的P文章I Mage V Elocimetry测量的先决条件。在PIV中,将光散射颗粒添加到正在测试的流量中。 激光束被形成光板,在时间间隔ΔT时用短脉冲两次照亮散射颗粒。 此时间间隔的下限由相机的双快门相互构图定义。 将散射的光记录到高分辨率数码相机的两个连续帧上。 较短的双快门相互交流时间,可以分析的流速越高。在PIV中,将光散射颗粒添加到正在测试的流量中。激光束被形成光板,在时间间隔ΔT时用短脉冲两次照亮散射颗粒。此时间间隔的下限由相机的双快门相互构图定义。将散射的光记录到高分辨率数码相机的两个连续帧上。较短的双快门相互交流时间,可以分析的流速越高。
传统的嵌入地热回路的桩,称为能源桩,已被成功用作地源热泵系统的热交换器。对于以供暖为主的地区,长期保持地面热平衡对地源热泵系统至关重要。太阳能是手动给地面充电最可行的能源。在本研究中,使用数值模拟研究了用于地下太阳能储存的能源桩-太阳能集热器耦合系统的热性能。结果表明,能源桩-太阳能集热器耦合系统应采用较低的流速,以节省循环泵的运行成本。对于桩长为 30 m 的情况,当质量流速从 0.3 降至 0.05 kg/s 时,太阳能储存率下降约 2%。在一年中,太阳能储存的最大日平均率达到 150 W/m。研究还发现,增加桩的长度和直径可以通过保持系统温度相对较低来提高系统的热性能。此外,经过一年的运行,桩间热干扰对降低太阳能存储率的影响被量化为对于桩间间距为3倍桩直径的组群在10 W / m以内。
摘要。细粉末的气动输送对于许多工业过程至关重要,包括激光金属沉积 (LMD),这是一种直接金属增材制造 (DMAM) 技术,使用激光熔化金属粉末逐层构建固体物体。为了优化工艺,必须正确理解粉末在工艺条件下的行为。耦合计算流体动力学 - 离散元建模 (CFD-DEM) 和多相 - 粒子单元 (MP-PIC) 是两种流行的欧拉-拉格朗日模型,用于模拟载有粒子的流动。本研究对它们进行了比较,以分析 LMD 机器小通道中的粉末行为。这两种方法的结果有很大不同,CFD-DEM 可以更准确地表示物理现实,而 MP-PIC 的计算效率更高。研究发现,由于粒子簇的形成,CFD-DEM 方法会产生更大的固体流速波动,而 MP-PIC 则显示出平稳且基本均匀的流动。结果表明,CFD-DEM应用于更准确、更详细的气力输送系统中固体流速的研究,而MP-PIC可用于初步研究和设计优化。
增强的地热射击分析基于2019年GTO报告Geovision中的技术假设:利用我们脚下的热量。对于Earthshot,我们根据最近的技术进步更新了EGS的一些技术成本和性能假设,并更新了EGS资源的潜力,以包括更详细的分析。钻井成本比Geovision中使用的值降低了20%。井生产率从Geovision的所有井的4.6 kg/s/bar提高到注射井的70 kg/s/bar,生产井的38.1 kg/s/bar,生产井流速略有增加到125 kg/s。更高的井生产率和流速导致井的井和寄生泵的损失更少。电厂尺寸也增加到100兆瓦e。使用EGS资源的区域研究用于增强美国西部的EGS资源潜力。 包括详细研究发现的较浅和更高质量的EGS资源。使用EGS资源的区域研究用于增强美国西部的EGS资源潜力。包括详细研究发现的较浅和更高质量的EGS资源。
主要领域:机械与航空航天工程 摘要:近年来,UAS(无人机系统)通过集成先进的摄像机、传感器和硬件系统获得了改进的功能;然而,UAS 仍然缺乏检测和记录音频信号的有效手段。这部分是由于硬件的物理规模和硬件集成到 UAS 中的复杂性。当前的研究是将高增益抛物面麦克风集成到 UAV(无人机)中用于声学勘测的更大规模研究工作的一部分。由于嵌入式抛物面天线与自由流掠流之间的气动相互作用,需要使用挡风玻璃将天线整平到飞机上。当前的研究开发了一种表征方法,通过该方法可以优化各种挡风玻璃的设计和配置。该方法测量候选挡风玻璃的法向入射声传输损耗 (STL) 以及其在一系列流速下安装时产生的流体动力噪声的增加。在俄克拉荷马州立大学的低速风洞上设计并安装了测试装置。测试设备使用附在风洞测试段地板上的“静音箱”。风洞测试段和静音箱之间的直通窗口允许在两个环境之间安装候选挡风玻璃。安装在风洞测试段和静音箱内的麦克风记录各种流速下的声谱,范围在每秒 36 至 81 英尺之间。制造了一个张紧的 Kevlar® 挡风玻璃验证样本来验证系统性能。STL 频谱是通过比较 Kevlar® 膜两侧麦克风的信号来测量的。将流离场景的法向入射 STL 结果与其他研究中对相同材料在张紧状态下的结果进行比较。在几种流速下还测量了流入传输损耗频谱数据以及膜引起的流动噪声的增加。该系统已被证明可以产生与流入和流离测试配置的参考数据一致的 STL 数据,并且能够检测到验证样本挡风玻璃产生的流动诱导噪声的增加。