步骤 4:Modbus 配置 • 协议处理器端口:打开或关闭端口,更改协议处理器的波特率(默认 - 38400)、奇偶校验(默认 - 偶数)和从属 ID(默认 - 1)。这不是协议处理器的节点 ID。 • 协议处理器设置 -类型:BACnet、Lonworks、Metasys N2。 - 协议处理器的 MAC 地址(仅限 BACnet 和 Metasys N2) - 协议处理器的节点 ID(仅限 BACnet 和 Metasys N2) -Modbus TCP ID • 温度传感器:用于修改 RTD 的斜率 • 自定义 K 系数:设置混合和回流流量计的 K 系数,其中 K 以脉冲/加仑为单位。 • 设置阀门地址(在较新的软件上):一次只能连接一个阀门来设置阀门地址。如果使用双阀设置,请连接要寻址的阀门的 RS-485 电缆。按“阀门关闭”按钮,选择所需地址,然后按提交按钮。离开页面前,按“阀门打开”按钮。
摘要:尽管对深度有效地利用深度低渗透率储层中的地理能力剥削的深度和有效利用的意义越来越多,但使用液压破裂技术仍需要实质性增强。在这项工作中,指出了深度低渗透性储层中精确的液压压裂应力测量的主要挑战,包括高岩石温度,高孔压力,高孔压力,压裂机制,岩石拉伸强度和钻孔条件。在这种情况下,提出了相应的几个未来研究指示。这些涉及热孔弹性效应,井下传感器和流量计,适当的室内拉伸强度测试方法,新的应力计算方法,混合测试技术以及精制的耦合数值模型。未来的研究建议将在随后的阶段为深度低渗透性储层中的地球能源开发提供几种新的观点。
A-4 – 飞机仪表 A-4 大气数据工作组 AS8036 更新工作组 A-4 ED 电子显示器 A-4 EFIS 工作组 AS407 工作组 A-4 FLW 燃油流量计 A-4 HUD平视显示器 A-4 ULD 水下定位装置 A-5 航空起落架系统 A-5A 机轮、刹车和防滑控制装置 A-5B 齿轮、支柱和联轴器 A-5C 飞机轮胎 A-10 飞机氧气设备 A-20 飞机照明指导小组 A-20A 机组站照明 A-20B 外部照明 A-20C 内部照明 A-21 飞机噪音测量和噪音航空排放模型 A-22 防火和可燃性测试 AC-9 飞机环境系统 AC-9C 飞机结冰技术 AC-9M 客舱空气测量 S-7 驾驶舱和运输飞机操纵质量标准 S-9 客舱安全规定 S-9A 安全设备和救生系统 S-9B 客舱内饰和家具 飞机座椅 ACBG 机身控制轴承指导小组 ACBGPB 滑动轴承 ACBGREB 滚动元件
摘要 —本文介绍了一种使用低全球变暖潜能值制冷剂 R1234yf 的两相流微通道热管理系统 (MTMS)。热测试载体 (TTV) 由嵌入基板的单个或多个热测试芯片制成,然后将其附着到 MTMS 上。该系统包括两个相同的铝制微通道散热器 (MHS),它们串联在冷却回路中,冷却回路还包括一个气体流量计、一个微型压缩机、一个冷凝器、一个节流装置和辅助测量组件。实验结果表明,热管理系统可以耗散 526 W/cm 2 的热通量,同时将结温保持在 120 °C 以下。对于具有更高结温(例如 175 °C)的 SiC MOSFET,预计当前系统耗散的热通量高达约 750 W/cm 2。详细分析了压缩机转速、节流装置开度、MHS 上的 TTV 布置、下游加热器对系统冷却性能的影响。研究表明,目前的
A-4 – 飞机仪表 A-4 大气数据工作组 AS8036 更新工作组 A-4 ED 电子显示器 A-4 EFIS 工作组 AS407 工作组 A-4 FLW 燃油流量计 A-4 HUD 平视显示器 A-4 ULD 水下定位装置 A-5 航空起落架系统 A-5A 机轮、刹车和防滑控制装置 A-5B 齿轮、支柱和联轴器 A-5C 飞机轮胎 A-10 飞机氧气设备 A-20 飞机照明指导小组 A-20A 机组站照明 A-20B 外部照明 A-20C 内部照明 A-21 飞机噪音测量和噪音航空排放建模 A-22 防火和可燃性测试 AC-9 飞机环境系统 AC-9C 飞机结冰技术 AC-9M 客舱空气测量 S-7 运输飞机驾驶舱和操控质量标准S-9 客舱安全设施 S-9A 安全设备和救生系统 S-9B 客舱内饰和家具 飞机座椅 ACBG 机身控制轴承 转向组 ACBGPB 滑动轴承 ACBGREB 滚动元件
摘要 — 风洞是一种管状装置,其横截面逐渐变化,就像文丘里流量计一样,并具有使用强力风扇吹风的功能。它是机械和航空航天工程实验室研究全尺寸或缩小版汽车或飞机模型周围气流行为的典型设备。因此,它在空气动力学设计中起着至关重要的作用,节省了实时运行过程中因故障而产生的成本和时间。实验室使用中小型风洞进行实验和研究。虽然与商用风洞相比,这些风洞的尺寸相对较小,但满足其准确和精确的设计和制造规范是一项相当艰巨的任务。本文回顾了与此类低亚音速开路风洞的设计、制造和测试方面相关的几项先前研究。它侧重于各种风洞组件的设计方面,例如测试段、收缩锥、扩散器、驱动系统和沉降室。文中还介绍了制造该器件所用的材料。文中还简要讨论了实验测试和 CFD 模拟的结果。
制药行业生产的产品直接影响着地球上数十亿人中大多数人的生活。因此,一个看似很小的错误或故障可能会对成千上万人的健康产生不利影响。制药行业的监管机构认识到了这些风险,并实施了各种法规,以确保制药过程的完整性,从而确保数十亿人所依赖的药品的安全性和有效性。与制药行业没有直接关系的个人应该注意,因为这些法规的某些方面正在被过程工业所采用。因此,使用符合或可以轻松升级以满足制药要求的设备和做法是务实的。一些大批量药品通常使用连续加工技术制造;然而,药品制造通常是分批进行的。因此,这些过程通常包含许多压力和温度测量,例如本地指示器(仪表)、变送器和开关。这些测量中的许多都是在极端条件下进行的,例如在高压釜中。虽然可能有一些流量计,但批量过程通常包含称重仪器来实现材料添加。有些工艺涉及洁净室,其中低压差测量非常重要。工艺测量可以
许多疾病,如心血管疾病、动脉粥样硬化、糖尿病、慢性静脉功能不全等,都会引起血流的功能性和形态性改变。1,2血流的动态监测在生命科学研究、药物评价、临床诊断、临床应用以及手术指导等方面有重要的价值。目前,一些针对活体动物组织特别是血管的有效测量方法正在研究,如磁共振灌注成像、正电子发射断层扫描(PET)、X射线血管造影、荧光血管造影、激光多普勒血流仪等。但这些血流成像技术都存在一定的局限性。3-5例如,磁共振灌注成像和PET多用于整体成像,空间和时间分辨率不高,成本较高;荧光血管造影和X射线血管造影不能提供血流的功能性信息,并且需要注射造影剂。多普勒流量计只能提供单点监测,不能提供完整的二维(2-D)血流速度图。6 – 9 与其他成像技术相比,激光散斑对比成像(LSCI)可以以较低的成本提供二维全速血流分布。
I. i ntroduction t辐射工具用于现代电力系统的实时操作,例如概率功率流,n-x安全筛选和蒙特卡洛方法,仍然是棘手的问题。功率流方程,如果通过经典的直接迭代算法求解,则随时间缩放为N×N系统的O(n)[1]。然而,需要大量的重复流量计算来分析不确定性的影响(例如,分布式能源的输出,消失的需求以及随机的失败或故障或故障)通过概率的方法(例如概率的功率流动),从而无法满足实时操作的方法,从而无法满足实时操作的需求[2]。从理论上讲,量子计算算法可以使用无嘈杂的量子计算机在经典方法上实现指数加速[3],[4]。这项工作是利用量子至高无上的第一次尝试来解决与电源计算相关的棘手的挑战。关键创新是通过改进的Harrow-Hassidim-lloyd(HHL)[5]算法来构建实用的量子功率流(QPF)模型和求解器。这封信展示了QPF的潜力,有可能满足电源流量计算的不断增长,并支持快速有弹性的电力系统操作。
Rosstandart 的 FBU TsSM 系统是国家质量基础设施的基本组成部分。产品测试和计量可确保测量的一致性、准确性和可靠性,是确认产品在其生命周期各个阶段的一致性的活动的基础。只有中心配备标准设备,这些极其重要的工作才能高质量实施。不是比喻意义上的,而是最字面意义上的。因此,需要不断现代化、技术更新和掌握新能力。近年来,中心的创新发展开始受到建筑物理和道德老化的阻碍,日益满足工作场所组织的要求和放置参考设备的条件。随着重建主要阶段的完成,工作场所的人体工程学已达到现代要求的水平。对外部影响最敏感的标准和测试台现在位于“远离城市噪音”的地下两层专门准备的房间中。越来越多的多功能测量仪器出现,可以进行两种、三种或更多种类型的测量。在重新设计场所时,我们寻求为实验室内和实验室间转移 SI 建立最佳的物流。放置非格式设备的机会已经出现。测试流量计的装置占地350平方米。设备工作面积