与前面几节中提到的流量调节程序不同,连续速度调节允许通过改变泵特性曲线,连续修改泵输出以满足系统要求。如果流量线性增加,系统阻力(管道特性曲线)将二次增加。离心泵的行为方式类似。如果流量和速度线性增加,则产生的扬程也会二次增加。由于这些关系,即使相对较小的速度变化也能覆盖很宽的工作范围。根据相似定律,以下关系适用于离心泵(见图9):
与前面几节中提到的流量调节程序不同,连续速度调节允许通过改变泵特性曲线,连续修改泵输出以满足系统要求。如果流量线性增加,系统阻力(管道特性曲线)将二次增加。离心泵的行为方式类似。如果流量和速度线性增加,则产生的扬程也会二次增加。由于这些关系,即使相对较小的速度变化也能覆盖很宽的工作范围。根据相似定律,以下关系适用于离心泵(见图9):
由于服务器和数据中心级别的功率密度不断增加,高性能计算服务器的热管理正成为数据中心冷却行业面临的普遍挑战。高效散热也与电子封装可靠性直接相关。由于水基冷却剂的热性能更高,直接芯片液体冷却等改进的冷却技术可以满足不断增长的冷却需求。使用动态冷却概念,实验研究了一种进一步提高直接液体冷却 (DLC) 效率的方法。开发了一种流量控制装置 (FCD),用于使用陶瓷加热器调节流向四个定制热测试车辆 (TTV) 的流量。TTV 组件被放置在标准 19 英寸信息技术设备 (ITE) 机架的四个不同高度,位于安装有冷板的测试夹具中。每个 TTV 的流量调节是基于每个 TTV 的功耗进行的。每个 TTV 的功耗因整个机架中各种非均匀功率分布值而变化。分析了冷却剂入口温度和流速对 TTV 温度和机架压降的影响。结果表明,TTV 上的温度更加均匀,最大功率时 TTV 上的最高温度降低。还通过将所得结果与已发表的文献进行比较,分析了温度均匀性对封装级可靠性的影响。