摘要:对医学的贡献可能来自不同的领域,其中大多数领域都充满了渴望贡献的研究人员。在本文中,我们的目标是通过机器学习与网络开发的交集做出贡献。我们使用基于JavaScript的库Tensorflow.js,使用从Kaggle获得的神经网络对生物医学数据集进行建模。本研究的主要目的是介绍TensorFlow.js的功能,并在开发为基于Web的应用程序定制的复杂机器学习模型的开发中促进其实用性。我们对三个数据集进行了建模:糖尿病检测,手术并发症和心力衰竭。虽然Python和R当前占主导地位,但JavaScript及其衍生物迅速增长,提供了可比的性能和与JavaScript相关的其他功能。Kaggle是我们下载数据集的公共平台,提供了广泛的生物医学数据集集合。因此,读者可以通过对所兴趣的任何情况进行较小的调整,轻松地测试我们讨论的方法。结果表明,糖尿病检测的准确性为92%,手术并发症几乎为100%,心力衰竭的精度为80%。可能性很大,我们认为这是专注于Web应用程序的研究人员,尤其是在医学领域的绝佳选择。关键字:生物信息学 - 张力流 - JavaScript - 糖尿病 - 药物 - 机器学习 - Angular
Bravyi、Gosset 和 König(Science 2018)、Bene Watts 等人(STOC 2019)、Coudron、Stark 和 Vidick(QIP 2019)以及 Le Gall(CCC 2019)最近的研究表明,浅(即小深度)量子电路和经典电路的计算能力存在无条件分离:量子电路可以以恒定深度求解经典电路需要对数深度才能求解的计算问题。利用量子纠错,Bravyi、Gosset、König 和 Tomamichel(Nature Physics 2020)进一步证明,即使量子电路受到局部随机噪声的影响,类似的分离仍然存在。在本文中,我们考虑了在计算结束时任何恒定部分的量子比特(例如,巨大的量子比特块)都可能被任意破坏的情况。即使在这个极具挑战性的环境中,我们也朝着建立量子优势迈出了第一步:我们证明存在一个计算问题,可以通过量子电路以恒定深度解决,但即使解决该问题的任何大子问题也需要对数深度和有界扇入经典电路。这为量子浅电路的计算能力提供了另一个令人信服的证据。为了展示我们的结果,我们考虑了扩展图上的图状态采样问题(之前的研究也使用过)。我们利用扩展图对顶点损坏的“鲁棒性”来表明,对于小深度经典电路来说很难解决的子问题仍然可以从损坏的量子电路的输出中提取出来。
6天前 -- 零件编号或规格。根据规范。所用设备的名称。数量。1.00.单位。品牌。有效期限...... (3)防卫政策局局长、采购技术后勤局局长或陆上自卫队参谋长......
在2021年,在全国各地的不同地点钻了五个钻孔,以考虑不同的自然条件。每个钻孔都有一个安装了单个U-Pipe的热交换器。在2021年,进行了测试温度测量和TRT测试,而在2022 - 2023年,定期测量以各个季节的季节进行季度进行。在地下最浅的部分的结果深度深约2-5米,表明其温度与气候和天气状况之间存在牢固的关系。进一步,该地下温度区域被称为每日和季节温度变化的区域。下面的地下温度变异性随着深度而逐渐降低,较少依赖外部因素。在通常15-25米的深度处,具体取决于位置,温度稳定,接近给定位置时平均环境气温的值。这个地下温度区(称为中性或瞬态温度的区域)可以持续到约50-60米的深度甚至更高。根据地热梯度的值开始更深的地下温度开始升高。在本文提出的研究中得出的地下温度值在一定程度上也取决于各种地理和人为因素,例如岩石的热性质,例如导热率,含水层的存在,气候异常和地下基础设施的存在。
Bravyi、Gosset 和 König(Science 2018)、Bene Watts 等人(STOC 2019)、Coudron、Stark 和 Vidick(QIP 2019)以及 Le Gall(CCC 2019)最近的研究表明,浅(即小深度)量子电路和经典电路的计算能力存在无条件分离:量子电路可以以恒定深度求解经典电路需要对数深度才能求解的计算问题。利用量子纠错,Bravyi、Gosset、König 和 Tomamichel(Nature Physics 2020)进一步证明,即使量子电路受到局部随机噪声的影响,类似的分离仍然存在。在本文中,我们考虑了在计算结束时任何恒定部分的量子比特(例如,巨大的量子比特块)都可能被任意破坏的情况。即使在这个极具挑战性的环境中,我们也朝着建立量子优势迈出了第一步:我们证明存在一个计算问题,可以通过量子电路以恒定深度解决,但即使解决该问题的任何大子问题也需要对数深度和有界扇入经典电路。这为量子浅电路的计算能力提供了另一个令人信服的证据。为了展示我们的结果,我们考虑了扩展图上的图状态采样问题(之前的研究也使用过)。我们利用扩展图对顶点损坏的“鲁棒性”来表明,对于小深度经典电路来说很难解决的子问题仍然可以从损坏的量子电路的输出中提取出来。
随机量子电路通常被认为难以进行经典模拟。在某些情况下,这已被正式推测——在深度二维电路的背景下,这是谷歌最近宣布“量子计算霸权”的基础——并且没有证据反对更普遍的可能性,即对于具有均匀随机门的电路,典型实例的近似模拟几乎与精确模拟一样困难。我们通过展示一个浅随机电路系列来证明情况并非如此,该电路系列在标准难度假设下无法有效地进行经典模拟,但可以近似模拟除超多项式一小部分电路实例之外的所有电路实例,时间与量子比特和门的数量成线性关系;这个例子限制了最近随机电路模拟的最坏情况到平均情况简化的稳健性。虽然我们的证明是基于一个人为的随机电路系列,但我们进一步推测,足够浅的恒定深度随机电路通常可以有效地模拟。为此,我们提出并分析了两种模拟算法。通过为深度为 3 的“砖砌”架构实现我们的一种算法(该架构很难进行精确模拟),我们发现一台笔记本电脑可以在 409×409 网格上模拟典型实例,变分距离误差小于 0.01,大约需要一分钟每个样本,而这项任务对于以前已知的电路模拟算法来说是难以完成的。数值证据表明该算法仍然渐近有效。我们严格的复杂性分离和猜想的关键在于观察到 2D 浅随机电路模拟可以简化为由交替进行的随机局部幺正和弱测量组成的 1D 动态形式的模拟。类似的过程最近成为一项深入研究的焦点,该研究通过数值发现,随着测量强度的变化,动力学通常会经历从高效模拟状态到低效模拟状态的相变。通过从随机量子电路到经典统计力学模型的映射,我们给出了分析证据,表明我们的算法会发生类似的计算相变,因为电路架构的参数(如局部希尔伯特空间维度和电路深度)
摘要。自1980年代以来,已经开发出浅地热溶液,其原理是将热交换管附加到岩土结构的加固笼子上。这些低能解决方案结合了结构性和热作用,允许满足建筑物的加热和冷却需求,以非常低的碳成本。能量地理通常将其放置在地下水流中。一方面,这是避免任何多年热偏移的好方法,因为过量或默认值通过对流会得到缓和。这一对流产生了热羽,土壤中的热波可以与可能影响行为的下游结构相互作用。对这些互动的理解对于在城市规模上对浅层地热发展的明智管理至关重要。为了研究这些相互作用,已经在Sense City研究了一组9个能源堆,这是一个迷你城市,可以强加特定的气候,并且可以控制地下水流。使用FEM软件切塞-LCPC开发了一个数值液压 - 热耦合模型,以推断结果。实验模型和数值模型的组合为定义有关预防相互作用的指南提供了有用的结果。
VC 部门总部 (JB Andrews) 主要联系电话 (DSN 312) VC 部门主管 DSN:612-4824 / Comm:240-612-4824 部门副主管 DSN:612-4069 / Comm:240-612-4069 部门经理 DSN:612-4619 / Comm:240-612-4619 上诉与外联主管 DSN:612-6718 / Comm:240-612-6718 培训与项目主管 (空缺) DSN:612-4757 / Comm:240-612-4757 第 1 区 (ACC/AFDW/AFSOC) 主要联系电话 (DSN 312) 受害者首席律师 (JBLE) 受害者律师助理经理
如果某人在对提供服务的电力、水或下水道设施具有原始管辖权的城市范围内接受电力、水或下水道设施服务,或已申请接受电力、水或下水道设施服务,或要求
(6)能够对履行完成后可能出现的任何缺陷迅速、持续地作出反应。 (7)具有履行服务所必需的下列设施或同等设施: (a) 维护目标设备所需的工作设施; (b) 检查等所需的设施,包括测量仪器、测试设备和特殊工具; (c) 储存所需的借出货物、委托货物和政府供应货物的仓库。 (8) 实施上述服务需要以下结构和能力。 可按照所应用设备和所连接设备所要求的标准和质量提供服务。