低级别浆液性卵巢癌 (LGSC) 是一种形态学和分子学上不同的卵巢癌亚型,约占浆液性癌的 10%。与更常见的高级别浆液性卵巢癌相比,女性通常发病年龄较小,临床病程较长。目前,LGSC 的主要治疗与其他上皮性卵巢癌亚型相同,大多数患者的治疗包括减瘤手术和铂类/紫杉烷化疗。原发性手术细胞减灭至无可见残留疾病仍然是一个关键的预后因素;然而,由于 LGSC 的低反应率,在前期和复发情况下使用铂类化疗受到质疑。大多数 LGSC 表达类固醇激素受体,部分患者可能受益于化疗后的内分泌维持治疗,尤其是那些在手术完成时有残留疾病证据的患者。在复发情况下,虽然激素疗法可以提供疾病稳定且毒性相对较低,但客观反应率仍然很低。正在研究提高反应率的策略,包括与 CDK4/6 抑制剂联合使用。LGSC 中丝裂原活化蛋白激酶通路基因的激活体细胞突变患病率很高,最常见的是 KRAS 、 BRAF 和 NRAS 。曲美替尼是一种 MEK 抑制剂,已证明其疗效优于化疗和内分泌疗法。联合使用靶向疗法、免疫疗法和抗血管生成药物仍然是 LGSC 治疗的活跃研究领域。
抽象的同时多层涂料技术是广为人知的,但是它们的工业应用仍限于狭窄的市场领域。收养的一个障碍可能是熟悉此类过程但不需要的行业之间的不匹配,以及不熟悉但不熟悉的行业。此外,开发多层涂层过程的应用特定于技术挑战。在本文中,我们描述了我们针对新的和新兴的能源应用的全高含量高负载的浆液的同时多层涂层的解决方案。第一个问题是对模具内部物质中高负载的浆液的粒子堵塞(与剪切厚的粘合剂相结合),我们通过添加少量的粘度修改器而在不减少固体载荷的情况下通过添加少量的粘度修改器来缓解。第二个问题是Marangoni驱动的表面不稳定性,类似于顶层去润滑,我们通过仔细选择表面活性剂来调整每个浆液的动态表面张力来解决。在逐步开发的早期就解决了这两个问题,节省了显着的开发成本,在我们的情况下,这是由昂贵的材料驱动的。
在压缩负载下研究了基于陶瓷泡沫和ALSI10MG轻质铝合金的互穿金属陶瓷复合材料。陶瓷预成型是通过机械搅拌,干燥和最终烧结而产生的。它的相对密度约为25%,并通过铝合金通过气压浸润渗透。压缩负荷期间的损伤过程以及对裂纹发育的理解是这项研究的重点,并通过补充2D和3D表征方法获得。因此,使用通用测试机,数字图像相关性和显微镜设置的2D表面原位研究设置。进行3D研究,开发并进行了具有原位X射线计算机断层扫描的压缩测试,以了解材料裂纹的生长和裂纹的传播,以及其互穿金属 - 陶瓷复合材料内的失效机制。材料在平行于载荷方向的陶瓷相中显示裂纹起始。随后裂纹簇的形成随后发生了故障机理的变化,这是由于剪切应力支配的失败,其宏观裂纹在45°方向上的宏观裂缝在载荷方向上发生了变化。可以确定复合材料的良好失败。2D和3D调查方法的组合可以深入了解互穿复合材料的失败行为,从而有助于理解超出当前知识状态的失败机制。
目的。癌症患者来源的类器官 (PDO) 在细胞外基质存在下生长为三维 (3D) 结构,并且已发现代表原始肿瘤的遗传复杂性。此外,与患者来源的异种移植模型相比,PDO 可以在更短的时间内生长并进行药物敏感性测试,并且费用更低。许多复发性卵巢癌患者会出现对化疗具有耐药性的恶性积液。由于这些患者经常接受腹水或胸腔积液的姑息抽吸,因此有可能获得存在于恶性积液中的多细胞球体 (MCS) 形式的肿瘤样本。我们的目标是在选择支持类器官生长的条件下开发卵巢癌恶性积液中 MCS 的短期培养物,并将其用作经验性药物敏感性测试的平台。方法。本研究从高级别浆液性卵巢癌 ( HGSOC ) 患者中收集恶性积液标本。回收 MCS 并置于支持类器官生长的培养条件下。在其中一部分标本中,在短期培养的两个时间点进行 RNA 测序,以确定转录组对培养条件的变化。还使用 Ki67 染色和组织学分析来表征这些标本中的类器官诱导。对所有标本进行了药物敏感性测试。结果。我们的模型描述了在原代培养数天内形成的类器官,它可以重现恶性腹水的组织学特征,并可以扩增至少 6 天。对四名患者标本的 RNA 测序分析表明,在培养 6 天内,与细胞增殖、上皮-间质转化和 KRAS 信号通路相关的基因显着上调。药物敏感性测试确定了几种具有治疗潜力的药物。结论。来自 HGSOC 恶性积液的 MCS 的短期类器官培养可用作经验性药物敏感性测试的平台。这些离体模型可能有助于在个性化治疗方案之前筛选新的或现有的治疗药物。© 2020 Elsevier Inc. 保留所有权利。
1 Candiolo 癌症研究所,FPO-IRCCS,Candiolo,10060 都灵,意大利; concetta.dambrosio@unito.it (CD); jessica.erriquez@ircc.it(日本语); sonia.capellero@ircc.it (SC); mittica@aslvco.it(总经理); eleonora.ghisoni@ircc.it(EG); elena.maldi@ircc.it(EM); enrico.berrino@ircc.it (EB); tiziana.venesio@ircc.it(电视); riccardo.ponzone@ircc.it (RP); marco.vaira@ircc.it (MV); giorgio.valabrega@ircc.it (GV); martina.olivero@unito.it(MO)2 都灵大学肿瘤学系,Candiolo,10060 Torino,意大利 3 都灵大学分子生物技术和健康科学系,10126 Torino,意大利;maddalena.arigoni@unito.it(MA);ra ffi aele.calogero@unito.it(RAC)4 意大利都灵健康与科学城,10126 Torino,意大利;fulvio.borella87@gmail.com(FB);d.katsaros@libero.it(DK);sprivitera@cittadellasalute.to.it(SP);mribotta@cittadellasalute.to.it(MR)5 都灵大学生命科学与系统生物学系,10125 Torino,意大利; giovanna.dinardo@unito.it 6 都灵大学医学科学系,10126 都灵,意大利 7 剑桥大学,剑桥 CB2 0XZ,英国;Douglas.Hall@cruk.cam.ac.uk (DH);mercedes.jimenez-linan@addenbrookes.nhs.uk (MJ-L.);alp37@cam.ac.uk (ALP);James.Brenton@cruk.cam.ac.uk (JDB) 8 英国癌症研究中心剑桥研究所,剑桥 CB2 0RE,英国 * 通信地址:mariaflavia.direnzo@unito.it 或 mariaflavia.direnzo@ircc.it;电话:+ 39-011-993-3343 † 这些作者对本文的贡献相同。
引言生物修复是处理被有机污染物污染的土壤的常见方法。Currently there are many challenges to bioremediation.例如,石油不能完全代谢为CO 2和H 2 O,而左上的某些污染物(例如多环芳烃(PAHS))比其父母更具毒性。由于其低溶解度,这些污染物变得更难及时处理,因为它们被微生物较少可用,因为它们被土壤颗粒吸收。要处理这些化合物的低溶解度,经常使用表面活性剂,但它们带来了其他问题。它们代价高昂,对微生物剧毒,难以生物降解,并且可能吸收到土壤中。浆液生物反应器(SB)可用于缓解其中一些问题,并处理用多种有机物质污染的土壤,例如多环芳烃(PAHS),农药,炸药和氯化有机污染物。该技术正在用于对用顽固,有毒和疏水有机化合物污染的土壤进行生物修复。当SB中的普通治疗不足时,可以使用两液相(TLP)生物反应器。TLP生物反应器已被确定具有增强生物利用度并增加疏水有机物降解的潜力。