本研究的目的是开发一种便携式数据采集系统,用于测量模拟划船过程中每次划桨的功率输出和脚部产生的力量,并使用该系统研究用于描述划船表现的选定变量的可靠性。使用 Concept II 划船测力计,瞬时功率输出计算为手柄处的力量(使用安装在手柄附近的小型传感器测量)和手柄速度(使用红外发射器 - 接收器检测飞轮每个叶片的通过来测量)的乘积。使用两个测力板测量脚部的累积力,每个测力板安装在每只脚下。使用运行 Asyst 数据采集软件的 80386SX 计算机以 30 Hz 的频率对所有传感器的输出进行采样。所有传感器均具有出色的线性度,系统校准显示测量误差小于 3%。使用对七名经验丰富的桨手进行的重复 90 秒最大测试来研究用于描述划船表现的变量的可靠性。统计分析表明,在使用的 14 个变量中,只有两个变量不符合设定的标准。总之,发现划船者在模拟划船过程中的表现非常可靠,并且本研究中使用的选定变量可用于客观地描述划船测功仪上的表现。
使用M -G集,电动机,控制器,测试程序的应用,测试项目的测试项目的分析 - 测试 - 电机测试和控制器测试(仅控制器)。- 使用涡流类型发动机测力计,测试策略,测试程序,测试程序的讨论。使用交流测功机测试程序。III单元功能安全性和EMC 9 0 9 0 9功能安全生命周期 - 故障树分析 - 危害和风险评估 - 软件开发 - 过程模型 - 开发评估 - 配置管理 - 可靠性 - 可靠性缩略图和冗余 - 功能安全性 - 功能安全性和EMC-功能安全和质量 - 自动驾驶汽车的功能安全性。电动汽车中的IV单元9 0 0 9简介 - EMC问题,EMC的电动机驱动问题,DC -DC转换器系统的EMC问题,EMC无线充电系统的EMC问题,EMC的EMC问题,车辆控制器问题,电池管理系统的EMC问题,电池管理系统问题,车辆EMC要求。电动机和DC -DC转换器系统中的单元V EMI 9 0 9 0 9概述 - 电动机驱动系统的EMI机制,进行电动机驱动系统的发射测试,IGBT EMI源,EMI耦合路径,EMI驱动系统的EMI建模。emi在DC-DC转换器中,EMI源,执行的发射高频,DC-DC转换器系统的等效电路,EMI耦合路径
摘要 本文介绍了兰卡斯特大学大多数工程专业一年级本科生承担的一个项目,他们的任务是设计、建造和测试一个比例模型风力涡轮机。学生们两人一组,能够就涡轮机上的叶片几何形状和叶片数量做出设计决策。利用熔融沉积成型 (FDM) 增材制造 (AM) 技术,学生们能够通过增材制造生产涡轮叶片,这为大大提高学生可以生产的模型翼型的精度和光洁度提供了机会,并确保了同一轮毂上叶片的几何重复性。它还使学生能够在叶片下侧生产凹面,这在手工生产叶片时几乎是不可能的。使用 AM 技术制造的模型涡轮机的性能明显优于以前用手工方法生产的模型。引入 AM 方法也为这个设计-建造-测试项目提供了额外的教育维度。在这个项目中,学生将学习翼型和简单的空气动力学和力学。该项目向他们介绍了测试和测量方法,以及所使用的特定 AM 技术的优点和局限性。为了进行测试,模型涡轮机安装在风洞中的简单测力计上,允许施加不同级别的扭矩并测量各种空气速度的旋转速度。鼓励学生绘制功率系数与叶片尖端速度比的无量纲性能曲线。然后,他们可以使用这些数字预测具有类似几何形状的全尺寸转子的性能。
摘要。Sands, W.A., J.R. McNeal, M.T.Ochi, T.L.Urbanek, N. Jemni, 和 M.H.Stone。Wingate 和 Bosco 无氧测试的比较。J.强度条件。Res。18(4):000–000。2004。— 本研究的目的是比较 Wingate 循环和 Bosco 重复跳跃无氧测试。11 名男性(21.36 � 1.6 岁;179.1 � 9.3 厘米;78.7 � 11.0 公斤)和 9 名女性(21.89 � 3.66 岁;171.8 � 10.0 厘米;75.9 � 21.4 公斤),均为大学运动员,自愿参加。受试者以随机顺序执行每个测试。测试包括 30 秒的 Wingate 测试和 60 秒的 Bosco 测试。Wingate 测试使用 Monark 自行车测力计进行,Bosco 测试在力平台上进行。每次测试完成后,确定乳酸浓度峰值。男性和 Bosco 测试的平均功率值和峰值功率值在统计上都更大。男性的峰值乳酸值在统计上更大,但测试之间没有差异。测试之间的峰值乳酸浓度与峰值或平均功率的乳酸值之间的相关性在统计上不显著。测试之间的峰值功率之间的关系在男性中具有统计学意义,但在女性中不显著。研究结果表明,Bosco 和 Wingate 测试都测量无氧特性,似乎测量的是无氧功率和能力的不同方面。对于跳跃训练不充分的运动员来说,Bosco 测试也可能不合适。
背景:内感受,即对身体信号的处理和整合,对情绪体验和整体幸福感至关重要。内感受网络,包括体感皮层,因其在内感受和情绪处理中的作用而得到认可。高清经颅直流电刺激(HD-tDCS)已被证明可以调节初级体感皮层(S1)的大脑活动。基于这些发现,我们假设右侧 S1 上的阳极 HD-tDCS 将增强内感受能力并提高情绪感知。方法:36 名健康成人参加了两次相隔至少一周的课程。以随机顺序应用 20 分钟的 HD-tDCS 刺激(2 mA)和假刺激。两种情况都涉及通过测力计循环进行 tDCS 前的身体激活。使用心跳感知和呼吸负荷任务在两次课程之前和之后评估内感受能力。使用随机呈现的四套匹配的国际情感图片系统 (IAPS) 图片集来测量情绪感知。结果:主动 HD-tDCS 并未显著提高内感受准确性、内感受情绪评估或内感受敏感性。然而,在主动 HD-tDCS 之后观察到心脏内感受意识显著增加。没有观察到预期的情绪处理增强。结论:本研究首次尝试使用 HD-tDCS 在 S1 上调节内感受和情绪处理。虽然没有观察到一致的增强,但我们的研究结果为使用 HD-tDCS 调节内感受和情绪过程提供了见解,为进一步的研究指明了方向。进一步的研究应该考虑刺激技术的细微影响以及内感受和情绪之间的复杂相互作用。
简介 等速运动是一种允许肌肉在整个关节运动范围内最大程度收缩的运动形式。等速运动器械是一种用于医疗目的的康复锻炼设备,例如测量、评估和增加肌肉力量和关节活动范围。本次审查由芙蓉 Tuanku Jaafar 医院的一位高级理疗师要求进行。 目的/目标 评估等速运动器械对肌肉骨骼疾病康复的安全性、有效性、成本效益和组织影响。 结果与结论 使用等速运动器械可能会提高健康成年人的肌肉力量,但对中风患者则无效。证据还表明,等速运动器械是测量等速肌肉性能的可靠工具,能够更客观地评估肌肉力量,但可能与手动测试不一致。关于等速运动器械安全性的证据不足。此外,这种机器价格昂贵。 建议 等速运动器械可用于客观评估肌肉力量,并可提高健康成年人的肌肉力量。然而,在决定采购该设备之前,除了可能需要在操作机器之前对用户进行培训之外,还应考虑到安装机器所需的高成本和大面积。方法通过电子数据库搜索文献,包括 Medline、Cochrane Library、Science Direct 和 Google 和 Yahoo 等通用数据库。搜索策略使用以下术语,这些术语可以单独使用或以各种组合使用:“等速运动机”、“等速测力计”、“等速设备”、“等速机器”、“等速设备”、“肌肉骨骼疾病”、物理治疗和康复。搜索仅限于关于人类的文章。搜索没有语言限制。包括与等速运动机的有效性、安全性和成本效益有关的系统评价、荟萃分析和随机临床试验。
摘要 Centala, J、Pogorel, C、Pummill, SW 和 Malek, MH。听快节奏音乐会延缓神经肌肉疲劳的发生。J Strength Cond Res 34(3): 617–622, 2020—关于音乐对身体表现影响的研究主要集中在跑步至力竭的时间、血乳酸或最大摄氧量等结果上。肌电图疲劳阈值 (EMG FT ) 通过单次增量测试确定,操作上定义为在工作肌肉的 EMG 活动不增加的情况下可以无限期维持的最高运动强度。到目前为止,还没有研究检查过快节奏音乐对 EMG FT 的作用。因此,本研究的目的是确定快节奏音乐是否能减轻以 EMG FT 衡量的神经肌肉疲劳。我们假设,与对照条件相比,在运动期间听快节奏音乐会增加估计的 EMG FT。其次,我们假设在锻炼期间听快节奏音乐也会增加最大功率输出。十名健康的大学年龄男性(平均±SEM:年龄 25.3±0.8 岁[范围从 22 至 31 岁];体重 78.3±1.8 公斤;身高:1.77±0.02 米)两次访问实验室,间隔 7 天。每次访问时,EMG FT 由增量式单腿膝伸肌测力计确定。以随机顺序,受试者在两次访问中要么听音乐,要么不听音乐。所有音乐都以器乐形式呈现,节奏随机分布在 137 至 160 b·min 2 1 之间。结果表明,运动时听快节奏音乐可增加最大功率输出(无音乐:48 6 4;音乐:54 6 3 W;p = 0.02)和 EMG FT(无音乐:27 6 3;音乐:34 6 4 W;p = 0.008)。然而,两种条件(无音乐与有音乐)之间的绝对和相对运动末期心率以及运动末期运动腿自觉用力程度评分没有显著的平均差异。这些研究结果表明,听快节奏音乐可提高整体运动耐受力以及神经肌肉疲劳阈值。这些结果适用于运动和康复环境。