Labeo Rohita(Rohu)对南亚的水产养殖很重要,其生产量接近大西洋鲑鱼。虽然对Rohu的遗传改善正在进行中,但在Rohu中,在其他水产养殖改善计划中常用的基因组方法已被阻止,部分原因是缺乏高质量的参考基因组。在这里,我们提出了使用下一代测序技术组合产生的高质量的从头基因组,从而产生了946 MB基因组,该基因组由25个铬虫和2,844个未放置的支架组成。值得注意的是,虽然大约是现有基因组序列的大小的一半,但我们的基因组代表了使用流量细胞仪新估计的基因组大小的97.9%。与该基因组结合使用了120个个体的测序,以预测三个主要河流(Jamuna,Padma和Halda)中的种群结构,多样性和差异,以推断Rohu中可能的性别确定机器。这些结果证明了新的Rohu基因组在现代化Rohu遗传改善计划的某些方面的实用性。
工人或人口。出版物《辐射源的辐射防护和安全:国际基本安全标准 (BSS)》指出,所有用于患者剂量测定和源校准的剂量计均应按照剂量测定标准实验室标准进行校准。确保电离辐射剂量测量的可追溯性的需求在辐射的医疗应用中尤其重要,特别是在放射治疗中[2],其中成功的治疗关键取决于向患者输送剂量的准确性。在对接受其他医疗程序的患者进行辐射防护的情况下,剂量测定的不确定性可能比放射治疗更大,但确保测量结果可追溯至指定的不确定性水平是同样重要的要求[3]。 BSS [1] 强调在诊断成像期间为患者提供准确剂量测定的重要性;大多数人工剂量来自临床试验。
有机化合物的最大值2通过比色法估计葡萄糖3通过比色法估算磺基酰胺4同时估计布洛芬和扑热息痛通过紫外光谱法5通过紫外线测定量质量测定的甲酰胺8的测定量为素氨基素的8个测定的素氨基氨基甲基素的含量8的测定7钠通过火焰光度法9通过火焰光度法测定钾的测定10通过肾浊度测定测定氯化物和硫酸盐通过肾浊度测定11通过纸色谱法分离氨基酸12通过薄层色谱分离糖分13薄层色谱法13通过色谱法对植物色素分离14柱色素14示范实验在HPLC 15示范实验上示威实验,示威实验
摘要:干斑(DBS)的收集促进了新生儿筛查,以了解世界各地医疗保健系统中各种罕见但非常严重的条件。可从DBS样品中取出不同大小(1.5–6 mm)的子拳头,以用作一系列生化测定的输入。DNA测序工作流中的进步允许直接从外周血,唾液和DBS等输入中生成全基因组测序(WGS)文库。我们比较了从直接从DBS生成的库获得的WGS指标与从外周血提取的DNA产生的库,这是这种类型的测定的标准输入。我们通过更改打孔号和大小作为测定的输入来探索DBS作为WGS的输入的灵活性。我们表明,WGS库可以从各种DBS输入中成功生成,包括单个3 mm或6 mm的冲孔,在检测基因变异的许多重要性指标中都观察到了同等的数据质量。我们观察到DBS和周围血管提取的DNA的性能在检测可能的病原基因变异的样品中,从患有囊性纤维化或苯基酮尿尿的个体中的样品中没有差异。wgs可以直接从DBS进行,这是快速发现临床相关的,疾病的基因变异的有力方法。
•缺乏几个细胞过程和已知对正常神经发育至关重要的全身过程的测定(请参阅章节在体外电池中的发育神经毒性(测定的描述)和DNT IVB的评估以进行化学测试)。
摘要 铊在氰化物和亚硫酸盐镀金溶液中都用作添加剂,用于调节金在目标基材上的沉积方式。镀液中的铊含量对沉积金的性质(包括其微观结构和硬度)有很大影响。因此,特别是在商业工艺应用中,准确、快速、方便地测量镀液中的铊含量至关重要,以确保所制造产品的质量。人们已经研究了含铊的镀金溶液的循环伏安行为,但其铊含量的量化并不令人满意,要么昂贵且耗时,要么在复合基质中不准确。在这里,我们提出了一种专有的电分析铊测量方法,该方法快速且具有出色的准确性和灵敏度,即使在存在常见的镀液分解产物的情况下也是如此。关键词 循环伏安法、电化学沉积、镀金溶液、铊、亚硫酸盐镀液。
背景:G6PD是限制磷酸五磷酸途径中的酶的速率,可保护人类细胞免受氧化应激。G6PD缺乏症是人类最常见的酶病变之一,影响了全球估计有4亿个人。我们研究的主要目的是将筛选定性G6PDH分析的诊断准确性与标准定量测定法进行比较。方法论和结果:这是2年的研究,其中包括250例确认的G6PD缺乏症,udilipse G6PD定量测定法。其中210个是男孩,40个是女孩。通过G6PDH筛选分析在男孩中,有40例案例为错误正常,在女孩中有28例。讨论:我们的结果与穆罕默德·伊斯兰(Mohammed Islam),daae ln等,Bancone G等人,Kahn M等人进行的研究相媲美,结论:可以安全地得出结论,可疑的G6PD缺乏症的男性患者可以对G6PDH分析进行筛查,如果测试是不确定性的,则可以进行数量的测量。对于女性患者,建议省略筛查测试,并可以直接执行定量的G6PDH分析,以免错过G6PD缺乏的载体。关键字 - G6PD缺乏症,抗疟疾,纯合子。版权所有©2023作者:这是根据Creative Commons Attribution 4.0国际许可(CC BY-NC 4.0)分发的开放访问文章,允许在任何非商业用途的媒介中使用,不受限制地使用,分发和再现,以提供原始作者和源头。i ntroduction
可以通过扰动各个组件并研究系统的响应来理解生物系统。细胞生物学实验是通过应用的处理,细胞状态和测定的表型来定义的。鉴于大量可能的组合,测试每种情况都是不切实际的。我们提出了先知,这是一种基于变压器的计算模型,用于细胞表型预测。先知学习了细胞生物学实验空间的表示,使其能够预测不同表型的新细胞环境中未经测试的小分子或遗传扰动的结果,包括基因表达,细胞活力,细胞活力和细胞形态。其可扩展的体系结构促进了跨独立测定的培训,并使用转移学习来增强跨表型的性能。体外验证表明,先知指导实验设计的潜力,使其成为加速生物学发现的宝贵工具。
我们评估了在野外条件下估计驼鹿身体成分的技术。通过生物电阻抗分析 (BIA) 估计了 2 只驼鹿的体内水分,并通过尿素稀释估计了其中 1 只的体内水分。这些动物被屠宰,并对组织样本的蛋白质、水分、脂肪和灰分含量进行了分析。此外,还从其中 1 只身上解剖出腓骨肌群并进行相同的分析。化学测定的无食物体 (IFB) 脂肪测量值为鲜重的 15.4% 和 13.1%,IFB 水分含量范围为 58.6% 和 62.0%。在我们之前的估计值上再增加一个样本,我们确定腓骨肌脂肪的估计值与 IFB 脂肪有关,但有两个样本的收集方式与其余样本不同。尿素稀释法测定的空体水空间 (EBWS) 被证明不能精确估计 IFB 水量,因此我们终止了对这项技术的进一步研究。剃毛皮肤、去皮空胴体和空内脏中的脂肪百分比随 IFB 脂肪百分比线性下降,这表明这些身体成分中的脂肪被同时利用,这与长期以来认为驼鹿脂肪动员顺序的观点相矛盾。化学测定的 IFB 脂肪和水分含量与许多因素显著相关,包括 BIA 参数、活重 (LW)、总长度 (TL) 和细胞压积 (PCV)。然而,并非所有模型都包括 BIA 参数,在我们的分析中,LW 和 TL 似乎是身体成分最重要的预测因素。驼鹿的活重 (LW) 最好通过结合总长度、心脏周长和状况等级评分的线性模型进行预测。