以及导致病毒学失败的其他决定因素,包括导致药物暴露不理想的因素。结论:对于接受过治疗且血浆 HIV RNA 受到抑制且需要改变治疗方案的患者,对细胞 HIV DNA 进行测序可以提供有用的补充信息。然而,在解释结果时应小心谨慎。RAM 的存在并不一定是治疗成功的障碍。相反,即使是最敏感的测序技术也无法提供 HIV DNA 档案的全面视图。为了适当地指导治疗决策,必须始终将患者的整体临床和治疗史与耐药性测试的结果一起考虑。需要进行前瞻性对照研究来验证使用细胞 HIV DNA 进行药物耐药性测试的效用。
自定义Puretarget面板没有PACBIO正式支持。用户必须设计和订购其指南RNA并相应地优化其自定义面板。PACBIO可以提供有关指南RNA设计软件和优化自定义面板的策略的有限指导。我们建议在添加新的指南RNA或测试一组自定义指南之前,请首先使用支持的样本类型在Puretarget重复扩展面板上进行成功。添加少量重复扩展目标是相对较低的风险,因为片段的大小与套件(4-5 kb)中提供的面板相似。已显示出多达5对指南的成功,以实现其他重复扩展目标。SMRT链接PuretArget重复扩展分析或带有TRGT的命令行分析可以与包括新坐标的更新目标床文件一起使用。
阿尔茨海默病测序项目 (ADSP) 由两个阿尔茨海默病 (AD) 遗传学联盟和三个国家人类基因组研究所 (NHGRI) 资助的大规模测序和分析中心 (LSAC) 组成。两个 AD 遗传学联盟分别是由 NIA (U01 AG032984) 资助的阿尔茨海默病遗传学联盟 (ADGC) 和由 NIA (R01 AG033193)、国家心肺血液研究所 (NHLBI)、其他国家卫生研究院 (NIH) 研究所和其他外国政府和非政府组织资助的基因组流行病学心脏和衰老研究队列 (CHARGE)。序列数据的发现阶段分析由 UF1AG047133(给 Schellenberg、Farrer、Pericak-Vance、Mayeux 和 Haines 博士)支持; U01AG049505 授予 Seshadri 博士;U01AG049506 授予 Boerwinkle 博士;U01AG049507 授予 Wijsman 博士;以及 U01AG049508 授予 Goate 博士,并且通过 U01AG052411 授予 Goate 博士、U01AG052410 授予 Pericak-Vance 博士以及通过 U01 AG052409 授予 Seshadri 博士和 Fornage 博士来支持发现扩展阶段的分析。
在农业食品系统中广泛使用自然资源会对生物多样性产生广泛影响。为解决这些效果的策略在很大程度上未能大大降低生物多样性损失的速度。当前的生物多样性和可持续食品系统策略越来越多地推进两种非政府治理,多利益相关者倡议(MSI)和自愿可持续性标准(VSS)的方式,以及其关键政策工具。在本文中,我们分析了与增强生物多样性有关的公私对抗和MSI治理,并讨论了它们是否以及是否构成了2020年后策略中建议的大规模使用MSIS和VSSS的基础。我们的分析强调了政府对增强生物多样性的承诺的重要性,这是有效和强大治理的先决条件。我们还强调需要创新的监管以同时监督和推进各种VSS和MSI。我们的发现表明,到2020年,政府参与粮食治理的主要动机是食品安全法规或经济发展的进步,而不是增强生物多样性。因此,在全球范围内,公众参与VSS和MSI并不一定提供严格的生物多样性保护。在2020年,欧盟建立了一项针对生物多样性的综合战略,并将其三个十年的参与与有机农业融为一体,作为政策工具。该政策已扩散到当地的欧洲食品政策委员会。然而,资本密集型的提升在单个VSS中,使其他面向生物多样性的倡议没有实质性的政府支持。
下一代测序 (NGS) 的进步大大加速了微生物学研究创新方法的发展。在本研究中,我们提出了一种新方法来量化细胞内环境中基因缺失突变体的净存活率。该方法基于标准化的 Illumina 基因组 DNA 短读测序,无需在每个缺失突变体上使用特定的选择标记。验证结果表明,该方法可以准确量化混合突变体的加标池中的突变体,与基于 CFU 测定的预期值相比没有统计学上显着差异( p > 0.05)。此外,该方法还用于量化巨噬细胞中的 S . Gallinarum 突变体。将六个突变体和一个对照菌株混合在一个池中,并让其感染 HD11 细胞 2 小时。结果与之前的研究结果一致,为混合突变体感染在功能基因鉴定中的可行性提供了证据。值得注意的是,该方法的简单性和标准化植根于标准全基因组测序协议,使其可在各个实验室中轻松实施。
资格设置和结果 为了在 NGS STARlet 上对 Oxford Nanopore SQK-LSK114-XL V14 V1.0 方法进行生物学验证,对 8 个(4 个阳性样本 + 4 个阴性对照)或 24 个样本(22 个阳性样本 + 2 个阴性对照)进行了生物学运行。作为输入材料,1 μg 全长(48 kB)噬菌体 Lambda DNA 用于 8 个样本的运行。对于 24 个样本的运行,1 μg 剪切(9kB)人类基因组 DNA 作为输入材料。使用 Thermo Fisher Scientific Qubit 4 荧光计和 Quant-iT™ 1X dsDNA 高灵敏度检测试剂盒(Thermo Fisher Scientific,#Q33232)测定从 8 个和 24 个样本的生物学验证运行中获得的文库的 DNA 浓度。平均样品产量为 344.3 ng(+/- 51.5 ng)
资格设置和结果 为了在 NGS STARlet 上对 Oxford Nanopore SQK-LSK114-XL V14 V1.0 方法进行生物学验证,对 8 个(4 个阳性样本 + 4 个阴性对照)或 24 个样本(22 个阳性样本 + 2 个阴性对照)进行了生物学运行。作为输入材料,1 μg 全长(48 kB)噬菌体 Lambda DNA 用于 8 个样本的运行。对于 24 个样本的运行,1 μg 剪切(9kB)人类基因组 DNA 作为输入材料。使用 Thermo Fisher Scientific Qubit 4 荧光计和 Quant-iT™ 1X dsDNA 高灵敏度检测试剂盒(Thermo Fisher Scientific,#Q33232)测定从 8 个和 24 个样本的生物学验证运行中获得的文库的 DNA 浓度。平均样品产量为 344.3 ng(+/- 51.5 ng)
此预印本版的版权持有人于2025年1月23日发布。 https://doi.org/10.1101/2025.01.16.25320661 doi:medrxiv preprint
亨廷顿舞蹈症 (HD) 是一种常染色体显性神经退行性疾病,由亨廷顿蛋白 ( HTT ) 外显子 1 的 CAG 三核苷酸重复扩增引起。目前,HD 尚无治愈方法,HD 患者的临床治疗侧重于症状管理。之前,我们展示了使用 CRISPR-Cas9 通过靶向附近 ( < 10 kb) 的 SNP(在外显子 1 附近产生或消除原间隔区相邻基序 (PAM))来特异性删除扩增的 HTT 等位基因 ( mHTT )。在这里,我们使用 Oxford Nanopore 平台上的多重靶向长读测序方法,全面分析了 983 名 HD 个体中 HTT 外显子 1 两侧 10.4 kb 基因组区域内的所有潜在 PAM 位点。我们开发了计算工具(NanoBinner 和 NanoRepeat)来对数据进行解复用、检测重复并对扩增或野生型 HTT 等位基因上的读数进行分阶段。通过此分析,我们发现 30% 具有欧洲血统的 HD 患者共有一个 SNP,这被证实是人类 HD 细胞系中 mHTT 等位基因特异性删除的有力候选者。此外,多达 57% 的 HD 患者可能通过组合 SNP 靶向成为等位基因特异性编辑的候选者。总之,我们提供了受 HD 影响的个体中 HTT 外显子 1 周围区域的单倍型图。我们的工作流程可应用于其他重复扩增疾病,以促进用于等位基因特异性基因编辑的指导 RNA 的设计。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年1月21日发布。 https://doi.org/10.1101/2025.01.20.633932 doi:biorxiv Preprint