图S4。 扫描跨INSE通道的NERNST效果的光电流图:(a)设备示意图显示了跨INSE通道的GR/5L-INSE异质结构和电气检测的照明。 在此示意图之后,任何测得的电流都被迫流过半导体。 (b)与扫描光电流图同时测量的感兴趣区域的激光反射图。 这种测量使我们能够将激光的位置与观察到的信号相关联。 被选中的位置分别标记为石墨烯和INSE/石墨烯异质结构的位置1和2分别为位置(c)Nernst效应信号记录了不同的磁场和50µW的激光照明和50µW的激光照明和V_G = 0 V的位置1和2,位于1和2的位置,在1和2中亮着,在1和2的位置上,在Chemaine ElectereDere和Hersossctuction上闪闪发光。 裸露的石墨烯信号以蓝色显示,通过一个数量级放大,以更好地突出两条曲线之间的斜率差异。 进行测量是没有任何应用偏差的,因为它会掩盖Nern的效果,从而诱导图片中的其他光电流机制。 (d)扫描光电流图显示了在完整设备上的完整设备的测得的光电流,以-1T的施加了平面外电场。 (e)和(f)分别为0T和1T显示的类似扫描光电流图。图S4。扫描跨INSE通道的NERNST效果的光电流图:(a)设备示意图显示了跨INSE通道的GR/5L-INSE异质结构和电气检测的照明。在此示意图之后,任何测得的电流都被迫流过半导体。(b)与扫描光电流图同时测量的感兴趣区域的激光反射图。这种测量使我们能够将激光的位置与观察到的信号相关联。被选中的位置分别标记为石墨烯和INSE/石墨烯异质结构的位置1和2分别为位置(c)Nernst效应信号记录了不同的磁场和50µW的激光照明和50µW的激光照明和V_G = 0 V的位置1和2,位于1和2的位置,在1和2中亮着,在1和2的位置上,在Chemaine ElectereDere和Hersossctuction上闪闪发光。裸露的石墨烯信号以蓝色显示,通过一个数量级放大,以更好地突出两条曲线之间的斜率差异。进行测量是没有任何应用偏差的,因为它会掩盖Nern的效果,从而诱导图片中的其他光电流机制。(d)扫描光电流图显示了在完整设备上的完整设备的测得的光电流,以-1T的施加了平面外电场。(e)和(f)分别为0T和1T显示的类似扫描光电流图。
在1400/1100°C的循环温度下,可以在SNL处的垂直流动反应器中测量材料的氢生产性能。在此期间,将评估一组新组合物的氧化还原热力学和氢产生性能。焓预测的DFT模型将根据对以前时期测得的材料的氧化还原热力学的反馈进行改进,新型相变材料将通过此期间的计算预测来筛选。
在TT或TN系统中,必须使用残留电流设备(RCD),而测得的触发残留电流不超过100 mA。剩余的电流设备具有测量的触发剩余电流为30 mA是可取的。在IT系统中,需要使用绝缘监视设备,该设备在绝缘电阻不超过每伏的额定电压不超过50Ω(另请参见DIN EN 60079-14;第7.4节)。
微纳米电子器件中的有效散热需要在室温以上运行的热载体长距离传播。然而,热声子(介电纳米材料中的主要热载体)仅在几百纳米之后就会耗散热能。理论预测表面声子极化子 (SPhP) 的平均自由程可达数百微米,这可能会改善纳米材料的整体散热。在这项工作中,我们通过实验证明了 SPhP 的这种长距离热传输。使用 3 x 技术,我们测量了不同加热器-传感器距离、膜厚度和温度下 SiN 纳米膜的平面内热导率。我们发现薄纳米膜支持 SPhP 的热传输,这可以通过热导率随温度升高而增加来证明。值得注意的是,距离加热器 200 lm 处测得的热导率始终高于距离加热器 100 lm 处测得的热导率。这一结果表明,SPhP 的热传导至少在数百微米范围内呈准弹道形式。我们的研究结果为室温以上宏观距离的相干热操控铺平了道路,这将影响热管理和极化子学的应用。
使用单个电子或μ子事件和处于终态的喷流来测量顶夸克对 ( t ¯ t ) 的极化和自旋关联。测量基于 CMS 实验收集的 LHC 在 ffiffiffi sp ¼ 13 TeV 处的质子-质子碰撞数据,对应于积分光度 138 fb − 1 。通过对数据进行分箱似然拟合,同时提取极化矢量和自旋关联矩阵的所有系数。测量是全面进行的,并包含其他可观测量,例如 t ¯ t 系统的质量和 t ¯ t 静止框架中的顶夸克散射角。测得的极化和自旋关联与标准模型一致。从测得的自旋关联中,应用佩雷斯-霍罗德基标准得出关于 t ¯ t 自旋纠缠的结论。标准模型预测在生产阈值和 t ¯ t 系统质量较高时,t ¯ t 态将发生纠缠自旋。这是首次在高 t ¯ t 质量事件中观察到纠缠,其中大部分 t ¯ t 衰变是空间分离的,预期和观测显著性均高于 5 个标准差。
型号152-1电阻仪采用了一种测量技术,该技术符合ANSI/ESD关联标准,用于测量表面电阻,电阻率和音量电阻,并具有出色的测量准确性,并且使用点对点探针或两点探测器的测量范围为10至10欧姆。测得的电阻值清楚地显示在高对比度LCD显示屏上。有各种探针可用,配件选项包括步行测试适配器
图2男性和雌性野生型和NPAS2缺陷小鼠的热伤害阈值和芬太尼镇痛耐受性。对每天两次给药5天给药的固定剂量芬太尼(320μg/kg)的耐受性的发展被评估了我的测量尾部闪烁潜伏期(TFL),每天在男性中(a)和女性(b)。两向方差(ANOVA),男性,n = 9-11,相互作用:f 5,90 = 0.1601,p = 0.9764,天:F 3.058,55.04 = 48.38,p <0.0001,p <0.0001,治疗:f 1,18 = 0.7066,p <0.0001;女性,n = 11,相互作用:f 5,80 = 2.233,p = 0.0590,天:f 3.211,51.37 = 50.40,p <0.0001,治疗:f 1,16 = 0.001806,p <0.9666。(c)基线热伤害阈值在芬太尼注射开始之前测量。单向方差分析,n = 9 - 11,f 3,34 = 0.8418,p = 0.4805。(d)在第0天测得的基线热阈值与在芬太尼注射前第5天测得的阈值的比较。数据表示为在第5 - 第0天,单向方差分析,n = 9 - 11,f 3,34 = 2.765,p = 0.0568的数据表示的数据。数据表示为平均值±SEM。BSL,基线; TFL,尾部薄片延迟
(b)使用 Mie ACCD 探测器(蓝色条)测量的示例性信号分布和通过 FI 传输的信号的 Lorentzian 拟合,用于确定 Mie 条纹质心位置 m。 (c)用瑞利 ACCD 探测器测得的示例性信号分布(绿色条)和通过两个 FPI 传输的信号的高斯拟合(A:粉色,B:橙色)用于确定瑞利点位置 r A 和 r B 。 div>