我们报告了在静水压力条件下非中心超导体超导体BEAU的超导和正常状态特性的研究。状态的室温方程(EOS)分别在环境压力下揭示了散装模量(B 0)及其第一个衍生物(B'0)的值,分别为B 0≃132GPA和B'0≃30。最高的压力(p≃2。2 GPA),Beau仍然是多间隙I型超导体。在自洽的两间隙方法中对B C(t,p)数据的分析表明存在两个超导能隙,而间隙与T c比率∆ 1 /k b b t c〜2。3和∆ 2 /k b t c〜1。1分别[∆ = ∆(0)是间隙的零温度值,而k b是boltzmann常数。随着压力的增加,∆ 1 /k b t c增加,而∆ 2 /k b t c降低,表明压力增强(弱)在频带内超导载体之间的耦合强度在较大(较小)的超导能量隙已打开。超导过渡温度t c,超导间隙的零温度值∆ 1和∆ 2,以及热力学关键场b c(0)的零温度值随着压力的增加而降低,随着d t t c / d p p p p p p p p p≃− 0的速率。195 K / GPA,dΔ1 / d p≃-0。034 MEV / GPA,dΔ2 / d p≃-0。029 MEV / GPA和D B C(0) / D P = - 2。65(1)MT/GPA。 绘制为T C的函数的测得的B C(0)值遵循针对常规I型超导体建立的经验缩放关系。65(1)MT/GPA。绘制为T C的函数的测得的B C(0)值遵循针对常规I型超导体建立的经验缩放关系。
开发了一种简单、高效的模拟器,用于预测光伏能的产生及其在锂离子电池中的存储,该模拟器适用于四翼自主无人机,机翼上覆盖有基于薄膜砷化镓光伏电池(III-V)的太阳能电池板。该模拟器可以预测太阳能电池板产生的有效光伏功率以及无人机飞行时的电池组电压。辐照度、太阳倾斜角和无人机欧拉角等飞行参数被视为输入参数。测得的光伏功率和电池组电压与模拟值高度一致,这使得 XSun 公司可以实际使用。这项参数研究显示了气候和地理条件对无人机自主性的影响。在晴天最佳天气条件下,无人机飞行时间可持续 12 小时。
现有的沿海植被(海草,红树林,盐泥)范围地图和碳固存率从国际文献中得出,以估计奥克兰地区的碳固换率。此外,该项目还完善了由Tidal Research,Niwa和奥克兰大学进行的先前研究,该研究确定了BCE和恢复机会的当前范围,以国家/粗尺度和碳固存率和潜力(基于Australasia中在Australasia中测得的碳序列率)(基于Aoteara的碳序列率)(BULMERASIA中)2024a,Bulmer等。2024b,Stewart-Sinclair等。2024)。具体来说,该项目改善了奥克兰地区的区域空间栖息地图(使用下面详述的精制映射方法),总结了蓝色碳
我们首次报告了 50 MeV Li 3+ 离子辐照对串联电阻和界面态密度的频率依赖性影响的研究,这些影响是由射频溅射制备的 HfO 2 基 MOS 电容器的电容-电压 (C-V) 和电导-电压 (G-V) 特性确定的。样品在室温下用 50 MeV Li 3+ 离子辐照。测得的电容和电导已根据串联电阻进行校正。在辐照之前和之后,在 1 KHz 至 1 MHz 的不同频率下估算了串联电阻。观察到串联电阻在辐照前随频率从 6344.5 降低到 322 欧姆,在辐照后降低到 8954-134 欧姆。界面态密度D it 由辐照前的1.12×10 12 eV 1 cm 2 降至3.67×10 11 eV 1 cm 2
图1. 结构示意图及在正入射光下模拟得到的吸收光谱。(a)红外探测器的探测机理。目标的红外辐射透过大气后被红外探测器捕获。(b)双层超薄膜示意图及GST在不同状态之间的转变机制。当温度超过结晶温度𝑇𝑇 𝑐𝑐时,GST会逐渐由非晶态转变为结晶态,而一旦温度超过熔点𝑇𝑇 𝑚𝑚后,经过快速退火,GST又可以变回非晶态。(c)光谱椭偏仪测得的红外波段不同状态下GST的相对介电常数。(d)双相态超薄膜对正入射光的吸收光谱及大气透过光谱。
地球大气中声音的传播是一个复杂的物质,因为它始终不断变化的风和温度条件受到影响[1]。任何意图合成特定声音场室外的系统的设计,无论是为了准确复制声音还是控制,都必须至少必须意识到这种影响。最终目标是设计一个从户外音乐会取消声音的声场控制系统[2,3],我们在这项工作中实验研究了大气条件变化对扬声器传递功能的影响,该功能在较远的距离下测得。传递函数的可变性是估计静态和自适应声音轨道控制系统的鲁棒性和性能的关键因素。像地球大气这样的复杂介质中声音的传播是一个经过深入研究的范围(参见例如[1]进行严格的理论处理)。但是,有
© 2020 版权所有 Super Micro Computer, Inc. 保留所有权利。Super Micro Computer, Inc. 可能随时更改规格和产品描述,恕不另行通知。本文档中提供的信息仅供参考,可能包含技术上的不准确之处、遗漏和印刷错误。任何性能测试和评级均使用反映 Super Micro Computer, Inc. 产品大致性能的系统进行测量,这些性能由这些测试测得。本文中包含的信息可能会发生变化,并且可能由于多种原因而变得不准确,包括但不限于产品和/或路线图的任何变化、组件和硬件修订变化、新型号和/或产品发布、软件更改、固件更改等。Super Micro Computer, Inc. 不承担更新或以其他方式更正或修订此信息的义务。
参照 ISO 28927 的振动值始终以测量的振动值和不确定度的形式给出。不确定度表示测量时振动的扩散。实际工作情况下发出的使用中振动的扩散至少具有相同的幅度,通常要大得多。在许多情况下,参照 ISO 28927 的振动值也可用作在典型应用中使用工具时使用中振动值的粗略估计。使用中的振动受到我们无法控制的因素的影响,例如维护不当、盗版零件、不平衡的砂轮等。在测量噪音时,阿特拉斯·科普柯使用标准 ISO 15744。本目录中给出的数字是测得的声压级。如果测量值超过 80 dB(A),则声功率级为
参照 ISO 28927 的振动值始终以测量的振动值和不确定度的形式给出。不确定度表示测量时振动的扩散。实际工作情况下发出的使用中振动的扩散至少具有相同的量级,通常要大得多。在很多情况下,参照 ISO 28927 的振动值也可用作在工具用于典型应用时使用中振动值的粗略估计。使用中振动受我们无法控制的因素影响,例如维护不当、盗版零件、不平衡的砂轮等。测量噪音时,阿特拉斯·科普柯使用标准 ISO 15744。本目录中给出的数字是测得的声压级。如果测量值超过 80 dB(A),则声功率级为
NTPC热电站的项目2500 MW/10000 MWH BES的名称。项目总计:每个站点2500 MW/10000 MWH容量:500MW/2000 MWH。暂定最小投标尺寸:250 MW 1000 MWH。(每种植物的两个块250兆瓦。在400kV/220 kV的互连点上测得的所有能力)贝斯服务寿命设计的贝斯的使用寿命为每日单周期操作的20年。o&m 10年包括该项目的范围。降级额定项目的能力必须在调试期间证明,并且应维持运营的第一年。每日出院能力下降和年度往返效率应每年允许。