随着遥感技术的进步,地球观测 (EO) 已进入大数据时代,但在使用复杂的机器学习模型分析获得的 EO 数据时,所需的计算能力成为一个障碍。量子机器学习 (QML) 可能有助于在未来应对这一挑战,因为量子计算的主要期望是有效地解决计算任务。然而,QML 是否优于其经典对手仍未得到充分研究。关于使用 QML 进行 EO 数据分类,一些研究使用了量子退火器 [1, 2]。此外,应用量子电路分析 EO 图像也引起了广泛关注。到目前为止,一些研究依靠经典特征工程算法来获取关键特征,并使用量子电路进行特征转换和分类。Gawron 等人 [3] 提出了一种用于土地覆盖分类的量子神经网络,该网络依靠主成分分析 (PCA) 算法从多光谱图像中获取关键特征。除了特征工程算法外,本文还研究了使用经典深度学习算法进行特征提取。Sebastianelli 等人 [4] 使用经典 CNN 从图像中提取高级特征,并使用量子电路进行最终预测。
2018 年 10 月 23 日,《美国水基础设施法案》(AWIA)签署成为法律(PL 115-270)(美国国会,2018 年)。AWIA 修订了《安全饮用水法案》(SDWA)第 1414 条,指示美国环境保护署(EPA)制定并向国会提交一项战略计划,以提高收集的监测数据的准确性和可用性,这些数据用于证明符合国家主要饮用水法规(NPDWR),并由公共供水系统(PWS)提交给各州,或由各州提交给 EPA。指示 EPA 评估在确保提交数据的准确性和完整性方面面临的任何挑战;各州和供水系统在实施电子数据提交方面面临的挑战;以及用户在访问数据方面面临的挑战。最后,指示 EPA 包括一份调查结果摘要和建议,说明可用于提高提交数据的准确性和可用性的可行、经济有效的方法和手段。为了满足这一法定要求,EPA 与各州、PWS 和其他相关利益相关方进行了协调,以指导这项工作。这些讨论包括来自各州饮用水计划、PWS 和州实验室的工作人员,以及来自 EPA 相关办公室的工作人员。
©2020-22 Western Digital Corporation 或其附属公司。保留所有权利。Western Digital、Western Digital 徽标、ArcticFlow、IsoVibe 和 Ultrastar 是 Western Digital Corporation 或其附属公司在美国和/或其他国家/地区的注册商标或商标。Ceph 是 Red Hat, Inc. 或其子公司在美国和其他国家/地区的商标或注册商标。OpenStack ® 文字商标和 OpenStack 徽标是 OpenStack Foundation 在美国和其他国家/地区的注册商标/服务标记或商标/服务标记,并经 OpenStack Foundation 许可使用。所有其他商标均为其各自所有者的财产。
摘要 在本文中,我们提出了一种方法,将超声波检测数据 (UT) 与其空间坐标和方向向量链接到被检查的样本。这样,可以使用增强现实或虚拟现实实时在样品上直接可视化处理后的无损检测 (NDT) 结果。为了实现 NDT 数据和物理对象之间的链接,使用了 3D 跟踪系统。空间坐标和 NDT 传感器数据存储在一起。为了实现可视化,在 3D 模型上应用了纹理映射。测试过程包括数据记录、处理和可视化。所有三个步骤都是实时执行的。数据由 UT-USB 接口记录,在 PC 工作站上处理并使用混合现实系统 (MR) 显示。我们的系统允许实时 3D 可视化超声波 NDT 数据,这些数据直接绘制到虚拟表示中。因此,有可能在手动测试过程中协助操作员。这种新方法可以使测试过程更加直观,并且数据集可以最佳地准备保存在数字孪生环境中。样本的大小不仅限于实验室规模,还适用于更大的物体,例如直升机机身。我们的方法受到 NDE 4.0 概念的启发,旨在创建一种新型智能检测系统。
•扩大直接访问诊断的直接分诊,导致可疑的肺和食虫宿舍癌的紧急转介到所有可疑的癌症类型中•在记录嵌合抗原受体(CAR)T-CELL疗法的记录方面提供了新的指导,•对当前的患者选择调整的紧急治疗均适用于临床治疗和不接受的治疗,并进行了不接受的治疗,并进行了新的治疗•新的治疗方法•新的IGG和新的治疗方法。•现在允许将转移部位处理,以将已知主要的主要治疗视为第一次确定的治疗方法。•介绍记录非特异性症状转介的指导。•扩大了引用者的范围,即紧急可疑的癌症转介将包括任何转诊者,除了GP,GDP,验光师,验光师,验光师。•更新的方法可以报告更快的诊断标准,因此即使做出治疗的决定,报告也完全由与患者的沟通完全驱动。此外,在整个指导中都进行了较小的澄清。数据集更新来自国家癌症等待时间监视数据集2.0至2.1
保留所有权利。未经许可不得重复使用。(未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2020 年 1 月 21 日发布。;https://doi.org/10.1101/2020.01.15.20017749 doi:medRxiv preprint
3级高分辨率数据维度:str12 = 12; str80 = 80; info_line = 3;水平= 7985;听起来=无限; //(当前634个)变量:int n_soundings; n_soundings:long_name =“ soundings数”; double realease_time(sounding); Release_time:long_name =“ UTC释放时间”; Release_time:units =“自2011-01-01 00:00:00 UTC以来的秒”; Release_time:注释=“报告的发行时间已报告到L3响应数据最接近的第二个”; int Release_date_enc(sounding); Release_date_enc:long_name =“ UTC释放日期(编码)”; Release_date_enc:格式=“ 8位数整数:yyyymmdd”; int Release_time_enc(sounding); Release_time_enc:long_name =“ UTC发行时间(编码)”; Release_time_enc:格式=“ 6位数字:HHMMSS”; float site_lon(sounding); site_lon:long_name =“站点经度”; site_lon:units =“ lege_e”; site_lon:有效_range = -180.f,180.f; float site_lat(sounding); site_lat:long_name =“站点纬度”; site_lat:units =“ lege_n”; site_lat:有效_range = -90.f,90.f; float site_alt(sounding); site_alt:long_name =“ MSL上方的站点高度”; site_alt:单位=“ m”; int n_levels(sounding); n_levels:long_name =“级别数”;浮时间(响起,级别);时间:long_name =“发布时间以来的时间”;时间:单位=“ S”;时间:丢失_value = -999.f;时间:_fillvalue = -9999.f; float p(发声,级别); P:long_name =“压力”; P:单位=“ HPA”; P:Missing_value = -999.f; P:_fillvalue = -9999.f; float t(发声,级别); t:long_name =“干灯泡温度”; t:units =“ lege_c”; t:丢失_value = -999.f; t:_fillvalue = -9999.f; Float TD(发声,级别); TD:long_name =“露点温度”; TD:单位=“ Leg_c”; TD:丢失_value = -999.f; TD:_fillValue = -9999.f;
或半个多世纪以上,田野凸轮在推进大气科学方面发挥了核心作用。尽管最近几十年目睹了在美国和国际实验的分类和归档现场数据的有组织的努力,这在很大程度上是通过国家大气研究中心(NCAR)的主持人(NCAR)的主持人,但从1950年代到1980年代的运动中的数据尚未系统地收集并在中央位置进行了存档。在这里,我们报告了采取措施纠正这种情况的努力,最初的重点是大气发声数据。此外,我们通过识别和找到过去现场活动的观察结果并将此信息报告到我们的项目网站上,向国际社会呼吁国际社会在这项努力中sist。
During the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX), which coincided with Taiwan's Southwesterly Monsoon Experiment—2008 (SoWMEX-08), the upper-air sounding network over the Taiwan region was enhanced by increasing the radiosonde (‘‘sonde'') frequency at its operational sites and by adding several additional sites (three that were land based and two that were ship基于)和飞机Dropsondes。在Timrex的特殊观察期(2008年5月15日至6月25日)中,2330辐射观测成功地从增强的网络中获取。处理来自13个Upsonde站点的数据的挑战的一部分是,使用了四种不同的SONDE类型(Vaisala RS80,Vaisala RS92,Meisei和Graw)。对SONDE数据的后期分析表明,在许多SONDES中,尤其是在Vaisala rs80 rs80 sondes的数据中存在显着的干偏见,这些数据在四个地点使用。此外,船舶结构对SONDE数据的污染导致在关键海洋部位的低质量低级热力学数据。本文研究了用于质量控制SONDE数据的方法,并在可能的情况下纠正它们。特别注意校正湿度场及其对各种对流措施的影响。对校正后的SONDE湿度数据与独立估计的比较表明良好的一致性,表明校正有效地消除了许多SONDE湿度错误。检查对流的各种措施表明,使用湿度校正的SONDES对TIMREX期间对流的特征有很大不同的观点。例如,在RS80站点,使用校正的湿度数据的使用增加了平均斗篷; 500 j kg 2 1,平均对流率(CIN)降低80 j kg 2 1,并使中级对流质量流量增加了70%以上。最终,这些校正将为诊断分析和建模研究提供更准确的水分领域。
克 (g) 0.03527 盎司,常衡 (oz) 摄氏度 (°C) 的温度可以按如下方式转换为华氏度 (°F):°F=(1.8×°C)+32 除非另有说明,电导率以毫西门子每米 (mS/m) 为单位 除非另有说明,电阻率以欧姆米为单位 1 mS/m = 1000/ ( 1 欧姆米) 因此 10 mS/m = 100 欧姆米 垂直坐标信息参考“1988 年北美垂直基准 (NAVD 88)”,除非文中另有说明 水平坐标信息参考“1984 年北美基准,通用横轴墨卡托第 14 区 (NAD 84 UTM 区 14N)”,除非文中另有说明 GPS 数据的航空地球物理调查参考为 WGS84,如文中所述 主页文本给出了数据投影的描述,使用 din 采集和处理本报告中使用的首字母缩略词:EM 电磁 DTM 数字地形模型 GPS 全球定位系统 HEM 直升机电磁 RTP 简化到极点 USGS 美国地质调查局 UTM 通用横轴墨卡托本报告中使用的缩写:Hz 赫兹 kHz 千赫兹