摘要 — 水下回声测深仪是水面和水下舰艇声纳套件不可或缺的一部分。这些系统通过提供船体龙骨和海底之间的实时距离来确保舰队的安全作业。本文我们报告了一种用于舰队舰艇的具有出色声学参数的浅水回声测深仪的设计和开发。原型回声测深仪的峰值发射电压响应 (TVR) 为 170 dB,接收电压灵敏度 (RVS) 为 –187 dBV/µPa,电阻抗为 193 Ω。此外,这种声学换能器的设计具有通过控制传感器几何形状来调整工作频率的灵活性。这种灵活性确保了对工作频率的控制和根据要求进行定制。关键词:浅水回声测深仪、PZT、单波束、声学匹配层、水文
摘要背景:使用预测基因标志来协助临床决策变得越来越重要。深度学习在基因表达谱的表型预测中具有巨大的潜力。但是,神经网络被视为黑匣子,在没有任何解释的情况下,提供了准确的预测。这些模型变得可解释的要求正在增加,尤其是在医学领域。结果:我们专注于解释由基因表达数据构建的深神经网络模型的预测。影响预测的最重要的神经元和基因被鉴定出来并与生物学知识有关。我们对CAN-CER预测的实验表明:(1)深度学习方法优于大型训练集的经典机器学习方法; (2)我们的方法产生的解释与生物学比最先进的方法更连贯; (3)我们可以对生物学家和医生的预测提供全面的解释。结论:我们提出了一种原始方法,用于从基因表达数据中对表型预测深度学习模型的生物学解释。由于模型可以找到表型和基因表达之间的关系,因此我们可以假设已鉴定的基因与表型之间存在联系。因此,解释可以导致生物学家研究新的生物学假设。
目的:深部脑刺激 (DBS) 是一种行之有效的帕金森病 (PD) 治疗方法,通常可增强运动功能。然而,DBS 后可能会出现一些不良副作用,从而降低患者的生活质量。因此,临床团队必须仔细选择要进行 DBS 的患者。在过去十年中,曾有人尝试将术前数据与 DBS 临床结果联系起来,其中大部分都集中在运动症状上。在本文中,我们提出了一种基于机器学习的方法,能够预测大量 PD 的 DBS 临床结果。方法:我们提出了一种多模式管道,称为 PassFlow,可预测 84 个临床术后临床评分。PassFlow 由一个用于压缩临床信息的人工神经网络、一种用于从 T1 成像中提取形态生物标志物的最先进的图像处理方法以及一个用于执行回归的 SVM 组成。我们在 196 名接受 DBS 的 PD 患者身上验证了 PassFlow。结果:PassFlow 的相关系数高达 0.71,能够显著预测 84 个评分中的 63 个,优于比较线性方法。还发现,利用这些术前信息预测的指标数量与可获得这些信息的患者数量相关,表明 PassFlow 方法仍在积极学习中。结论:我们提出了一种基于机器学习的新型流程,用于预测 PD 患者 DBS 术后的各种临床结果。PassFlow 考虑了来自不同数据模式的各种生物标志物,仅从术前数据中就显示出一些评分的高相关系数。这表明,DBS 的许多临床结果都可以预测,而与特定的模拟参数无关,因为 PassFlow 已在没有此类刺激相关信息的情况下得到验证。
目的:深部脑刺激 (DBS) 是一种行之有效的帕金森病 (PD) 治疗方法,通常可增强运动功能。然而,DBS 后可能会出现一些不良副作用,从而降低患者的生活质量。因此,临床团队必须仔细选择要进行 DBS 的患者。在过去十年中,曾有人尝试将术前数据与 DBS 临床结果联系起来,其中大部分都集中在运动症状上。在本文中,我们提出了一种基于机器学习的方法,能够预测大量 PD 的 DBS 临床结果。方法:我们提出了一种多模式管道,称为 PassFlow,可预测 84 个临床术后临床评分。PassFlow 由一个用于压缩临床信息的人工神经网络、一种用于从 T1 成像中提取形态生物标志物的最先进的图像处理方法以及一个用于执行回归的 SVM 组成。我们在 196 名接受 DBS 的 PD 患者身上验证了 PassFlow。结果:PassFlow 的相关系数高达 0.71,能够显著预测 84 个评分中的 63 个,优于比较线性方法。还发现,利用这些术前信息预测的指标数量与可获得这些信息的患者数量相关,表明 PassFlow 方法仍在积极学习中。结论:我们提出了一种基于机器学习的新型流程,用于预测 PD 患者 DBS 术后的各种临床结果。PassFlow 考虑了来自不同数据模式的各种生物标志物,仅从术前数据中就显示出一些评分的高相关系数。这表明,DBS 的许多临床结果都可以预测,而与特定的模拟参数无关,因为 PassFlow 已在没有此类刺激相关信息的情况下得到验证。
光学透明神经微电极有助于同时从大脑表面进行电生理记录以及神经活动的光学成像和刺激。剩下的挑战是将电极尺寸缩小到单细胞大小并增加密度,以高空间分辨率记录大面积的神经活动,从而捕捉非线性神经动力学。在这里,我们开发了透明石墨烯微电极,它具有超小开口和大而透明的记录区域,视野中没有任何金延伸,高密度微电极阵列高达 256 个通道。我们使用铂纳米粒子来克服石墨烯的量子电容极限,并将微电极直径缩小到 20 μm。引入了层间掺杂的双层石墨烯以防止开路故障。我们进行了多模态实验,将微电极阵列的皮质电位记录与小鼠视觉皮层的双光子钙成像相结合。我们的结果表明,视觉诱发反应在空间上是局部的,适用于高
随着深度学习技术的快速发展,合成媒体的创建,尤其是深层的假声音,已经变得越来越复杂且易于访问。这在维持基于音频的内容的信任和真实性方面构成了重大挑战。在响应中,该项目提出了一种基于机器学习的方法来检测深层的假声音。该项目首先策划了一个由真实和深厚的假语音样本组成的多样化数据集,涵盖了各种人口统计学,口音和情感表达。预处理技术用于清洁和标准化音频数据,然后进行功能提取以捕获语音信号的相关特征。用于模型开发,采用了复发层增强的卷积神经网络(CNN)体系结构,从而利用了其从音频的频谱图来学习空间和时间特征的能力。该模型使用分类横向渗透损失在准备好的数据集上进行了训练,并通过反向传播进行了优化。对训练的模型进行评估是在单独的测试集上进行的,测量诸如准确性,精度,回忆和F1评分之类的性能指标。后处理方法,包括阈值和平滑,用于完善模型的预测并增强鲁棒性。所提出的方法提供了一个有希望的框架,用于检测音频内容中深层的虚假声音,这有助于努力打击错误信息的传播并保留数字媒体的完整性。但是,跨学科的持续研究和协作对于应对新兴挑战并确保负责任的伪造检测技术至关重要。
根据本许可的条款,您可以出于非商业目的复制,重新分配和调整工作,前提是适当地引用了工作。在任何使用这项工作时,不应建议ITU认可任何特定的组织,产品或服务。不允许未经授权使用ITU名称或徽标。如果您适应了工作,则必须根据相同或同等的创意共享许可证许可您的工作。如果您创建了这项工作的翻译,则应添加以下免责声明以及建议的引用:“此翻译不是由国际电信联盟(ITU)创建的。itu对此翻译的内容或准确性不承担任何责任。原始英语版应为绑定和真实版”。有关更多信息,请访问https://creativecommons.org/licenses/by-nc-sa/3.0/igo/
摘要 - 自闭症谱系障碍(ASD)的个人经常在健康,沟通和疾病处理中面临挑战;因此,早期诊断对于适当的治疗和护理是必需的。在这项工作中,我们考虑了检测或分类ASD儿童以帮助医疗专业人员早期诊断的问题。我们开发了一个深度学习模型,该模型分析了儿童对感觉刺激的反应的视频片段,目的是捕获ASD和非ASD参与者之间反应和行为的关键差异。与MRI数据的许多最近的ASD分类研究不同,它需要昂贵的专用设备,我们的方法使用了功能强大但相对便宜的GPU,标准的计算机设置和摄像机进行推理。结果表明,我们的模型有效地概括并理解儿童不同运动的关键差异。值得注意的是,尽管对于深度学习问题的数据有限,并且即使使用运动伪像,但我们的模型仍表现出成功的分类性能。索引术语 - 深度学习,自闭症谱系障碍,视频,分类
摘要:浅水测深是土木工程、港口监测和军事行动等各个领域的重要研究课题。本研究介绍了几种使用海上无人系统 (MUS) 评估浅水测深的方法,该系统集成了先进和创新的传感器,例如光探测和测距 (LiDAR) 和多波束回声测深仪 (MBES)。此外,本研究全面描述了同一地理区域内的卫星测深 (SDB) 技术。每种技术都从其实施和结果数据方面进行了全面概述,然后对其准确性、精确度、快速性和操作效率进行了分析比较。在 MUS 调查之前,使用传统方法进行的水深参考调查以及所有方法之间的交叉比较来评估方法的准确性和精确度。在对调查方法的每次评估中,都会进行全面的评估,解释每种方法的优点和局限性,从而使读者能够全面了解这些方法的有效性和适用性。该实验是作为“使用海上无人系统 23 的机器人实验和原型设计”(REPMUS23)多国演习的一部分进行的,该演习是快速环境评估 (REA) 实验的一部分。
摘要:浅水测深是土木工程、港口监测和军事行动等各个领域关注的重点课题。本研究介绍了几种使用集成了光探测和测距 (LiDAR) 和多波束回声测深仪 (MBES) 等先进创新传感器的海上无人系统 (MUS) 评估浅水测深的方法。此外,本研究全面描述了同一地理区域内的卫星测深 (SDB) 技术。详细介绍了每种技术的实施和所得数据,然后对其准确性、精确度、快速性和运行效率进行了分析比较。在 MUS 调查之前,使用传统方法进行的水深参考调查以及所有方法之间的交叉比较来评估方法的准确性和精确度。在对每一种调查方法进行评估时,都会进行全面的评估,解释每种方法的优点和局限性,从而使读者能够全面了解这些方法的有效性和适用性。该实验是使用海上无人系统 23 进行机器人实验和原型设计(REPMUS23)多国演习的一部分,而该演习又是快速环境评估 (REA) 实验的一部分。
