整个 DSP-3000 系列均采用 KVH 的专利数字信号处理 (DSP) 电子设备。KVH 的突破性 DSP 设计克服了模拟信号处理的局限性,几乎消除了温度敏感漂移和旋转误差。此外,KVH 的 DSP 技术在比例因子和偏置稳定性、比例因子线性度、开启到开启重复性和最大输入速率等关键领域提供了显著的性能改进。超低噪音 (ARW)、对交叉轴误差的不敏感性以及冲击和振动稳健性使 DSP-3000 系列成为要求苛刻的工业应用的理想选择。这种性能与我们成熟的全光纤光学电路固有的简单性和可靠性相结合,使 DSP-3000 系列成为运动感应、稳定、导航和精确指向应用的经济实惠的出色解决方案。
DSP-3000 采用 KVH 专利的数字信号处理 (DSP) 电子设备。KVH 突破性的 DSP 设计克服了模拟信号处理的局限性,几乎消除了温度敏感的漂移和旋转误差。此外,KVH 的 DSP 技术在比例因子和偏置稳定性、比例因子线性度、开启到开启重复性和最大输入速率等关键领域提供了显著的性能改进。超低噪音 (ARW)、对横轴误差的不敏感性以及冲击和振动稳健性使 DSP-3000 成为要求苛刻的工业应用的理想选择。这种性能与我们成熟的全光纤光学电路固有的简单性和可靠性相结合,使 DSP-3000 成为运动感应、稳定、导航和精确指向应用的出色且经济实惠的解决方案。
6.1.2 研究利用航空伽马射线数据推断土壤特性 ...................................................................................................... 147 6.1.3 研究一种结合土壤形成因素参数的模糊逻辑预测方法,并评估其在绘制土壤系列和特性方面的成功率。...................................................................................... 148 6.1.4 土壤调查现状、当前需求和应用前景,以及建立环境数字土壤调查框架 ................................................................................................................ 149
摘要:士兵作为高效的推土机,在最近关于人类世地貌学的辩论中,可以被视为景观变化的重要地貌驱动因素。由军事活动产生的“极地形态”与一组大小和几何形状各异的人造地貌相对应。它们在第一次世界大战凡尔登战场(法国)尤为常见,该战场是西线最大的消耗战之一。那场战役中的炮击和防御阵地的建设极大地改变了地貌,造成了数以千计的弹坑、掩体和炮位,改变了中、微地形。本文提出了一种创新方法,利用机载 LiDAR 在整个战场上获取的数字地形模型 (DTM),对这些小规模冲突引起的地貌(不包括战壕等线性特征)进行详尽清点。使用 Kohonen 的自组织映射 (SOM) 和分层凝聚聚类 (HAC) 进行形态分析,以量化和分类大量战争地貌。这种组合方法可以绘制超过一百万个地貌,这些地貌可分为八种不同的形状,包括弹坑和各种士兵制造的地貌(即掩体、炮位等)。使用现场观察进行的检测质量评估表明,该算法成功分类了 93% 的弹坑和 74% 的人类建造的地貌。最后,所制作的图像数据库和地图系列将帮助考古学家和林业工作者更好地管理凡尔登历史遗址,该遗址如今被约 10,000 公顷的大森林覆盖。© 2019 John Wiley & Sons, Ltd.
塔架使用电线连接,考虑到电线张力和与地面或附近物体的间隙。电线安装在通行权上,通行权是电力公司用来维护输电线路设施的一条土地。必须管理输电线路周围的树木和植物,以确保这些线路安全可靠地运行。本研究提出使用低成本无人机摄影测量法进行输电线路通行权测绘。进行航空摄影测量以在输电线路周围生成密集点云,并据此创建 DSM(数字表面模型)和 DTM(数字地形模型)。使用 nDSM(归一化数字表面模型)分离线路和附近物体,并在多图像空间中抑制噪声以进行地理空间分析。使用无人机图像对山区两段输电线路进行实验的结果表明,所提出的方法成功生成了附近有危险物体的通行权地图。
天然铁矿石洞穴已经闻名了几个世纪,但由于其尺寸很小,斑点缺乏,并且在许多情况下,由于它们在偏远地区的位置,因此没有引起太多关注。随着巴西环境法的最新变化和在巴西的米纳斯·格拉斯州以及巴西帕拉州卡拉萨斯州的QuadriláteroFerrífero的铁矿石勘探的增长,其中大量这些洞穴被发现和分类。洞穴环境立法需要几项技术研究,但主要是关于运营许可的地理结构方面,通常是长期的。地球物理学表明,在最近的研究中,有可能加速和改善洞穴岩石结构图,尤其是其屋顶,以阐明稳定性问题。浅地地球物理方法用于绘制和表征山洞所在的岩石质量。在这些铁质的喀斯特环境中对地球物理映射的挑战是相当大的,因为洞穴的尺寸很小,并且宿主岩石的物理特性很可变。在这项工作中,分析并讨论了在巴西北部的N4en Iron Iner矿场上执行的,在位于巴西北部的N4en Iron Ine的天然洞穴上执行的电阻率和GPR(地面穿透性雷达)的结果。
(1) 里约热内卢联邦农村大学,林业研究所,造林系,环境和林业科学研究生项目,塞罗佩迪卡,里约热内卢,巴西。(2) 维索萨联邦大学土壤系,维索萨,米纳斯吉拉斯州,巴西。(3) 圣保罗大学,“Luiz de Queiroz”农业学院,土壤科学系,皮拉西卡巴,圣保罗,巴西。(4) 里约热内卢联邦农村大学,农学研究所,土壤系,塞罗佩迪卡,里约热内卢,巴西。(5) 圣保罗大学“Luiz de Queiroz”农业学院土壤科学系,土壤和植物营养研究生课程,皮拉西卡巴,圣保罗,巴西。(6) 里约热内卢联邦农村大学,农学课程,塞罗佩迪卡,里约热内卢,巴西。
1.连续操作范围 PulseTRAK™ 技术通过消除其他配备多脉冲的传感器中常见的数据覆盖间隙和不规则点密度,实现了真正的连续操作范围。此功能大大简化了任务规划,并在整个数据集中产生一致的数据分布,甚至跨越接收器“盲区”。» 实现一致的点密度,不再有接收器“盲区”。» 无论地形如何变化,完全自由收集可显著提高效率。» 大大简化了任务规划。2.动态视场 (FOV) Galaxy 采用 SwathTRAK™ 技术,是唯一一款采用实时动态 FOV 的传感器,即使在不同的地形高度下也能保持固定宽度的扫描带。» 尽管地形高度发生变化,仍能保持规则的点分布并提高点密度一致性。» 与固定 FOV 传感器相比,航线数量更少,可实现最大收集效率。» 与固定 FOV 传感器设计相比,收集成本可节省 40-70%,具体取决于地形变化。
Daniele Giordan 1 , Davide Notti 1 , Alfredo Villa 2 , Francesco Zucca 3 , Fabiana Calò 4 , Antonio Pepe 4 , Furio Dutto 5 , Paolo Pari 6 , Marco Baldo 1 , Paolo Allasia 1
在过去二十年中,数字土壤测绘 (DSM) 已成为收集重要土壤信息的重要途径。DSM 是通过基于土壤特性或类别与环境之间关系的定量建模技术来准备的。底层模型源于 Dokuchaev (1899) 和 Jenny (1941) 的基本土壤方程:s = f(cl, o, r, p, t, … ),该方程指出土壤是气候、生物、地形、母质和时间的函数。最近,McBratney 等人的“s、c、o、r、p、a、n”方法进一步推进了这一概念模型。(2003),它具有额外的 s(土壤属性预测因子)和 n(地理位置预测因子)因素,并且还结合了残差误差建模。