1.连续操作范围 PulseTRAK™ 技术通过消除其他配备多脉冲的传感器中常见的数据覆盖间隙和不规则点密度,实现了真正的连续操作范围。此功能大大简化了任务规划,并在整个数据集中产生一致的数据分布,甚至跨越接收器“盲区”。» 实现一致的点密度,不再有接收器“盲区”。» 无论地形如何变化,完全自由收集可显著提高效率。» 大大简化了任务规划。2.动态视场 (FOV) Galaxy 采用 SwathTRAK™ 技术,是唯一一款采用实时动态 FOV 的传感器,即使在不同的地形高度下也能保持固定宽度的扫描带。» 尽管地形高度发生变化,仍能保持规则的点分布并提高点密度一致性。» 与固定 FOV 传感器相比,航线数量更少,可实现最大收集效率。» 与固定 FOV 传感器设计相比,收集成本可节省 40-70%,具体取决于地形变化。
LEM 模拟了 z = 0.01 处银河系质量星系的图像,该星系位于 3 eV 宽的箱体中,以 OVIII 和 FeXVII CGM 发射线为中心。面板为 30',像素为 15"(LEM FOV 和像素化),1 Ms。蓝色椭圆:光盘大小,从侧面看。明亮的银河系前景几乎完全被解析出来,利用了星系的红移。
4AOP 自动大气吸收图集操作版本 6SV1 太阳光谱中卫星信号的第二次模拟,版本 1 ASCII 美国信息交换标准代码 ANOVA 方差分析 ASTER 先进星载热发射和反射辐射计 BRDF 双向反射分布函数 CASI 紧凑型机载光谱成像仪 CDOM 有色溶解有机物 CRTM 社区辐射传输模型 CNES 法国国家空间研究中心 CRTM 社区辐射传输模型 CRTM 社区辐射传输模型 CZCS 沿海区彩色扫描仪 ENVISAT 环境卫星 ESA 欧洲空间局 FOV 视场 GDAL 地理空间数据抽象库 GIS 地理信息系统 GPS 全球定位系统 GRASS 地理资源分析支持系统 GRETL GNU 回归、计量经济学和时间序列库 HCMR 希腊海洋研究中心 GUI 图形用户界面HyMap 高光谱测绘仪 ILWIS 综合陆地和水域信息系统 iPAQ internet CompAQ 出品的掌上电脑 KOPRA Karlsruhe 优化和精确辐射传输算法 LAD 最小绝对偏差 LAI 叶面积指数 Landsat TM Landsat 专题测绘仪 Landsat ETM+ Landsat 增强专题测绘仪 Plus MERIS 中分辨率成像光谱仪 MIPAS 用于被动大气探测的迈克尔逊干涉仪 MODIS 中分辨率成像光谱辐射计 NASA 美国国家航空航天局
4AOP 自动大气吸收图集业务版本 6SV1 太阳光谱中卫星信号的第二次模拟,版本 1 ASCII 美国信息交换标准代码 ANOVA 方差分析 ASTER 先进星载热发射和反射辐射计 BRDF 双向反射分布函数 CASI 紧凑型机载光谱成像仪 CDOM 有色溶解有机物 CRTM 社区辐射传输模型 CNES 法国国家空间研究中心 CRTM 社区辐射传输模型 CRTM 社区辐射传输模型 CZCS 沿海区彩色扫描仪 ENVISAT 环境卫星 ESA 欧洲航天局 FOV 视场 GDAL 地理空间数据抽象库 GIS 地理信息系统 GPS 全球定位系统 GRASS 地理资源分析支持系统 GRETL GNU 回归、计量经济学和时间序列库 HCMR 希腊海洋研究中心 GUI 图形用户界面 HyMap高光谱测绘仪 ILWIS 综合陆地和水域信息系统 iPAQ internet CompAQ 出品的掌上电脑 KOPRA Karlsruhe 优化和精确辐射传输算法 LAD 最小绝对偏差 LAI 叶面积指数 Landsat TM Landsat 专题测绘仪 Landsat ETM+ Landsat 增强专题测绘仪 Plus MERIS 中等分辨率成像光谱仪 MIPAS 用于被动大气探测的迈克尔逊干涉仪 MODIS 中分辨率成像光谱辐射计 NASA 美国国家航空航天局
用于月球开拓者任务的月球热测绘仪。 NE Bowles 1 (neil.bowles@physics.ox.ac.uk)、BL Ehlmann 2,3、RL Klima 4、D. Blaney 3、S. Calcutt 1、J. Dickson 2、KL Donaldson Hanna 5,1、CS Edwards 6、R. Evans 1、R. Green 3、W. Frazier 3、R. Greenberger 2、MA House 7、C. Howe 8、J. Miura 2、C. Pieters 9、M. Sampson 10、R. Schindhelm 10、E. Scheller 2、C. Seybold 3、DR Thompson 3、J. Troeltzsch 10、TJ Warren 1、K. Shirley 1 和 J. Weinberg 10。 1 英国牛津大学物理系、2 加州理工学院,美国加利福尼亚州帕萨迪纳市、3 加州理工学院喷气推进实验室,美国加利福尼亚州帕萨迪纳市、4 约翰霍普金斯应用物理实验室,美国马里兰州劳雷尔市、5 中佛罗里达大学物理系,美国佛罗里达州奥兰多市、6 北亚利桑那大学,美国亚利桑那州弗拉格斯塔夫市、7 帕萨迪纳城市学院,美国加利福尼亚州帕萨迪纳市、8 STFC RAL 空间公司,英国迪德科特市、9 布朗大学,美国罗德岛州普罗维登斯市、10 Ball Aerospace & Technologies Corporation,美国科罗拉多州博尔德市。
在接下来的许多年里,科学界对此兴奋不已,忙碌不已。其有效载荷之一——月球矿物学测绘仪或 M3——发来的首批数据提供了分子线索,表明月球上可能存在水。现在,另一个有效载荷——Mini-SAR——发来的数据,经过印度和美国科学家联合小组的彻底分析,提供了在北极永久阴影区存在大量水冰沉积物的证据。这一消息于 2010 年 3 月 1 日宣布,随后得到了艾哈迈达巴德物理研究实验室主任 J.N. Goswami 的证实。“这无疑是一个重要发现。我们花了五个月的时间来评估这些发现,因为我们必须说服科学界,”他说。Goswami 是月船一号任务的首席科学研究员。
未来任务 SIR-C/X-SAR 第二次飞行在获取重复飞行干涉数据和从这些数据生成高程图方面取得了巨大成功,这促使人们计划进行第三次飞行。美国国家图像和测绘局 (NIMA) 提供资金对 SIR-C 进行改造,增加一个 60 米 (197 英尺) 的吊杆和一个外置天线,操作任务并处理数据,而 NASA 将提供所需的大部分额外资源。这项为期 11 天的任务被称为航天飞机雷达地形测绘仪 (SRTM),它将生成 80% 地球陆地表面的高程图。这次飞行目前列在 2000 年 5 月的航天飞机清单上,但航天飞机时间表的调整可能使 SRTM 飞行更早,或许早在 1999 年春季。
挥发物和矿物学测绘轨道器 (VMMO) 是一个低成本的 12U 立方体卫星概念,最初由欧洲航天局 (ESA) 选为 2018 年 SysNova 挑战赛的两个获胜者之一。VMMO 航天器将使用月球挥发物和矿物学测绘仪 (LVMM) 多波化学激光雷达有效载荷对月球南极永久阴影区域进行挥发物和矿物学勘察,以探测和绘制挥发物和其他资源如钛铁矿 (FeTiO 3 ) 的地图,地面采样距离 (GSD) 约为 100 米。开发宝贵的月球资源,如水冰和其他挥发物,对于未来载人月球基地的可持续性至关重要。尽管之前的月球任务已经在月球两极周围探测到并绘制了水冰地图,但对于月球风化层内挥发物含量的精确分布仍然存在很大的不确定性。未来计划执行多项任务
使用机载激光雷达系统收集了路易斯安那州屏障岛综合监测 (BICM) 计划的地形测量数据。这项研究是美国地质调查局 (USGS) 和路易斯安那州自然资源部 (LDNR) 的合作成果。术语“激光雷达”(源自“光检测和测距”)是指使用激光脉冲进行距离分辨远程测量的主动光学技术。激光雷达传感器与反射目标之间的距离是根据特征明确的激光脉冲发射和返回探测器之间的时间(即双向传播时间)以及光在传输介质中的速度计算得出的。四种不同的激光雷达系统被用于绘制路易斯安那州沿海地区的地图。每个激光雷达系统的硬件略有不同。因此,每个系统都开发了独特的处理软件。所有系统的共同点是应用和集成高精度差分 GPS 技术和数据处理。本节介绍了每个激光雷达系统和处理技术,以及生成 XYZ 数据的处理步骤。讨论的四个系统是:ATM(全地形测绘仪,NASA)、EAARL(实验性先进机载激光雷达,NASA)、CHARTS(紧凑型水文机载快速全程测量,美国陆军工程兵团)和 Leica ALS50-II(3001,Inc)。