先前的工作已建立了测试时间培训(TTT)作为一般框架,以进一步改善训练有素的模型。在对每个测试实例进行预测之前,模型首先是在同一实例上使用自我监督的任务(例如重建)进行训练。我们将TTT扩展到流设置,其中多个测试实例(我们的情况下的视频帧)以时间顺序到达。我们的扩展名是在线ttt:当前模型是从上一个模型初始化的,然后在当前框架和一个小框架上进行了训练。在线TTT在三个现实世界数据集上显着优于四个任务的固定模型基线。改进超过2.2×和1.5倍,例如全盘分段。令人惊讶的是,在线TTT还胜过其offline变体,该变体严格访问更多信息,对整个测试视频中的所有帧进行培训,而不管时间顺序如何。此发现,使用合成视频挑战了先前的工作中的挑战。我们将当地的概念形式化为在线优于offl ttt的优势,并通过消融和基于偏见 - 差异交易的理论分析其作用。
摘要 - 目的:基于脑电图(EEG)的脑部计算机界面(BCI)可以在人脑和计算机之间进行直接通信。由于脑电图信号的个体差异和非平稳性,此类BCI通常需要在每次使用之前进行特定于特定的校准会话,这是耗时且用户不友好的。转移学习(TL)已提议缩短或消除此校准,但现有的TL方法主要考虑使用局部设置,在此设置中,所有未标记的EEG试验都来自新用户。方法:本文提出了测试时间信息最大化集合(T-Time),以适应最具挑战性的在线TL方案,其中未标记的新用户的脑电图数据列入流中,并立即执行分类。T时间从对齐的源数据中初始化多个分类器。当未标记的测试EEG试验到达时,首先使用集合学习预测其标签,然后通过条件性熵最小化和自适应边缘分布正则正规化来更新每个分类器。我们的代码已公开。结果:基于三个公共运动图像的BCI数据集进行的广泛实验表明,Time Over-Ever-Ever-Ever-Ever-Over大约20种经典和最先进的TL方法。明显:据我们所知,这是基于无校准的EEG BCIS的测试时间适应的第一项工作,使插件的BCIS成为可能。
通过预训练的视觉模型进行测试时间适应,引起了越来越多的关注,以应对测试时间的分离转移。尽管事先实现了非常有前途的性能,但它们会进行密集的计算,这与测试时间适应非常不规则。我们设计了TDA,这是一种无训练的动态适配器,可通过视觉模型进行有效,有效的测试时间适应。tda可与轻巧的键值缓存一起使用,该缓存维持具有很少射击伪标签的dy-namic队列作为值,而相应的测试样本特征则是键。杠杆键值缓存,TDA允许通过渐进式伪标签的细化逐渐调整数据,而逐步测试数据,而不会产生任何反向传播。此外,我们引入了负伪标记,即当模型不确定其伪标签预测时,通过将伪标签分配给某些负类时,可以减轻伪标签噪声的不利影响。在两个基准上进行的广泛实验表明,与最先进的艺术品相比,TDA的实体有效性和效率。该代码已在https://kdiaaa.github.io/tda/中发布。
大型视觉模型的发展,无明显的剪辑,已经催化了对有效适应技术的研究,特别着眼于软及时调整。联合使用,使用单个图像的多个增强视图来增强零击的概括,它正在成为互动的重要领域。这主要指导研究工作,以进行测试时间及时调整。相比之下,我们为t estime a u Megentation(MTA)引入了强大的m eanshift,该方法超过了基于及时的方法而无需进行此类训练程序。这将MTA定位为独立和基于API的应用程序的理想解决方案。此外,我们的方法不依赖于某些先前测试时间augting技术中使用的临时规则(例如,置信度阈值)来过滤增强视图。相反,MTA将每种视图的质量评估变量直接纳入其优化过程,称为inllielness评分。该分数通过寻求过程进行了共同优化,从而导致有效的训练和无参数方法。我们在15个数据集上广泛地标记了我们的方法,并演示了MTA的优势和计算效率。在零摄像机模型和最先进的几种方法的顶部轻松部署为插件模块,MTA显示了系统的和一致的改进。
在测试时将源模型调整到目标数据分布是解决数据移位问题的有效方法。以前的方法通过使用熵最小化或正则化等技术使模型适应目标分布来解决此问题。在这些方法中,模型仍然通过对完整测试数据分布使用无监督损失的反向传播进行更新。在现实世界的临床环境中,由于隐私问题和部署时缺乏计算资源,动态地将模型调整到新的测试图像并避免在推理过程中更新模型更有意义。为此,我们提出了一种新的设置 - 动态自适应,它是零样本和偶发的(即,模型一次适应单个图像,并且在测试时不执行任何反向传播)。为了实现这一点,我们提出了一个名为 Adaptive UNet 的新框架,其中每个卷积块都配备了一个自适应批量归一化层,以根据域代码调整特征。域代码是使用专门针对医学图像进行训练的域先验生成器生成的。在测试时,模型仅接收新的测试图像并生成域代码以根据测试数据实例调整源模型的特征。我们验证了 2D 和 3D 数据分布偏移的性能,与以前的测试时自适应方法相比,我们在测试时不执行反向传播的情况下获得了更好的性能。关键词:测试时自适应、医学图像分割。
卷积神经网络(CNN)在培训数据集代表预期在测试时遇到的变化时,可以很好地解决监督学习问题。在医学图像细分中,当培训和测试图像之间的获取细节(例如扫描仪模型或协议)之间存在不匹配和测试图像之间的不匹配时,就会违反此前提。在这种情况下,CNNS的显着性能降解在文献中有很好的记录。为了解决此问题,我们将分割CNN设计为两个子网络的串联:一个相对较浅的图像差异CNN,然后是将归一化图像分离的深CNN。我们使用培训数据集训练这两个子网络,这些数据集由特定扫描仪和协议设置的带注释的图像组成。现在,在测试时,我们适应了每个测试图像的图像归一化子网络,并在预测的分割标签上具有隐式先验。我们采用了经过独立训练的Denoising自动编码器(DAE),以对合理的解剖分段标签进行模型。我们验证了三个解剖学的多中心磁共振成像数据集的拟议思想:大脑,心脏和前列腺。拟议的测试时间适应不断提供绩效的改进,证明了方法的前景和普遍性。对深CNN的体系结构不可知,第二个子网络可以使用任何分割网络使用,以提高成像扫描仪和协议的变化的鲁棒性。我们的代码可在以下网址提供:https://github.com/neerakara/test- time- aptaptable-neural-near-netural-netural-networks- for- domain-概括。
摘要 — 脑机接口 (BCI) 为连接人脑和外部设备提供了一条有前途的途径,其解码能力取得了显著进步,这主要得益于日益复杂的技术,尤其是深度学习。然而,由于会话和受试者之间的分布变化,在现实场景中实现高精度仍然是一个挑战。在本文中,我们将探讨在线测试时间自适应 (OTTA) 的概念,以在推理时间内以无监督的方式持续调整模型。我们的方法通过消除在自适应过程中访问源数据的要求来保证隐私的保护。此外,OTTA 通过不需要任何会话或受试者特定的数据来实现无校准操作。我们将使用轻量级架构以及不同的 OTTA 技术(如对齐、自适应批量归一化和熵最小化)来研究脑电图 (EEG) 运动意象解码任务。我们检查了两个数据集和三个不同的数据设置以进行全面分析。我们的适应方法产生了最先进的结果,有可能促使 BCI 解码的迁移学习转向在线适应。索引术语 —BCI、深度学习、跨学科、迁移学习、运动意象、EEG、测试时间适应
摘要 - 超声(US)图像中胎儿大脑皮层下区域的生长可以帮助鉴定出异常发育的存在。手动分割这些区域是一项艰巨的任务,但是最近的工作表明,它可以使用深度学习自动化。然而,应用验证的模型来表现出徒手的美国量通常会导致由于获取和对齐的巨大差异而导致性能下降。在这项工作中,我们首先证明测试时间适应(TTA)可用于在存在真实和模拟域移动的情况下改善模型性能。我们通过将规范地图集作为解剖学的先验提出了一种新型的TTA方法。在存在各种域移位的情况下,我们基准了不同TTA方法的绩效,并证明了我们提出的方法带来的改进,这可能会进一步促进对胎儿脑发育的自动监测。我们的代码可从https://github.com/joshuaomolegan/ tta-for-3d-fetal-subcortical-sementation获得。关键字 - 测试时间适应,超声,分段
解决复杂的计划问题需要大型语言模型(LLMS)明确对状态过渡进行建模,以避免规则违规,遵守限制并确保操作性 - 这是由自然语言固有的歧义所阻碍的任务。为了克服这种歧义,规划域定义语言(PDDL)被杠杆化为一种计划,以实现精确和正式的状态描述。使用PDDL,我们可以生成一个象征性的世界模型,其中经典的搜索算法(例如A ∗)可以无缝地找到最佳计划。但是,由于缺乏PDDL培训数据,直接生成具有当前LLM的PDDL域仍然是一个开放的挑战。为了应对这一挑战,我们建议扩大LLMS的测试时间计算以增强其PDDL推理功能,从而使高质量的PDDL域的产生。具体来说,我们引入了一种简单而有效的算法,该算法首先采用了最佳的N采样方法来提高初始解决方案的质量,然后通过口头化的机器学习以细粒度的方式优化解决方案。我们的方法在PDDL域的产生中大大优于O1-Mini,在两个任务上达到了超过50%的成功率(即,从自然语言描述或PDDL问题中生成PDDL域)。这是在不需要额外培训的情况下完成的。通过利用PDDL作为状态抽象,我们的方法能够在几乎所有竞争级的计划任务上都超过当前最新方法。