摘要:根系的高度适应性义务内寄生虫,root-nematodes(meloidog- yne spp。),对农作物造成极大的破坏。我们的研究旨在评估拮抗剂真菌和细菌菌株对俄罗斯南部最占地的根管线虫的有效性。通过分子遗传鉴定,发现在俄罗斯南部,Meloidogyne Hapla Chitwood物种,1949年,Meloidogyne Incognita(Kofoid and White,1919年)Chitwood,1949年,在开放式和温室的根源和温室中。在实验室进行了对第二阶段少年(J2)M。Hapla的筛查。在实验结束时,分离出了两种淡莫莫克斯少量BK-6和metarhizium arisopliae bk-2的液体真菌培养物,它们的nematicidal活性达到100.0和70.2%,并超过了生物标准(Nemotafagagin-Mikopro)的值,并超过38.4%和8.4%。在植入番茄之前,在植入番茄之前,在引入土壤中时,在淡紫色BK-6,M。AnisopliaeBK-2和Arthrobotrys conoides bk-8的液体培养物中发现了最高的生物效率。与对照组相比,根部形成的胆囊数量较低,为81.0%,75.5%和74.4%。
日益增加的锂离子电池需要进一步的安全测试和评估。最重要的是要理解不同的测试条件的影响,尤其是用于验证计算机模型。文献中有大量来自热失控测试的数据,但很少有来自大型测试系列的数据。评估不同测试条件的影响的缺失系统方法意味着在比较测试结果时的不确定性。此外,细胞发育中的快速速度(包括对较大细胞的使用越来越多)需要验证先前发表的结果。这项工作介绍了来自37个测试的热失控数据,对一种大格式棱镜锂离子细胞(157 AH)。测试是在封闭压力容器中进行的,该封闭压力容器以及惰性气氛以及排气收集器引擎盖下方的开放设置。此外,采用了六种不同的热失控触发方法以及四种不同的电荷状态。重点放在产生的气体上,这是安全评估的关键方面。将结果与文献数据进行了比较,并提出了一种新的修改方法来计算封闭压力容器中的特征发泄速率。可以得出结论,触发方法会影响电池的气体产量,质量损失和最高温度,并影响其电荷状态。大细胞格式可能会影响特定的总气体产生并增强不同触发方法的影响,但对其他评估参数的影响很小。由于测试设置的不同,在测试结果中没有明显差异,除了由于环境大气中释放的气体的潜在燃烧而导致的差异。
将使用双刺激连续质量量表 (DSCQS) 方法,受试者并排观看原始图像和受损解码图像,并在连续量表中对两者进行评分。该量表分为五个相等的长度,与正常的 ITU-R 五点质量量表相对应,即优秀、良好、一般、较差和差。该方法需要评估每个测试图像的原始版本和受损版本。观察者不知道哪一个是参考图像,并且参考图像的位置以伪随机顺序更改。受试者通过在垂直刻度上插入标记来评估原始图像和解码图像的整体质量。垂直刻度成对打印,以适应每个测试图片的双重呈现。
b' 对锂离子电池的技术需求快速增长,促使人们开发具有高能量密度、低成本和更高安全性的新型正极材料。高压尖晶石 LiNi 0.5 Mn 1.5 O 4 (LNMO) 是尚未商业化的最有前途的候选材料之一。这种材料的两个主要障碍是由于高工作电压导致的较差的电子电导率和全电池容量衰减快。通过系统地解决这些限制,我们成功开发出一种厚 LNMO 电极,面积容量负载高达 3 mAh \xe2\x8b\x85 cm 2 。优化的厚电极与纽扣电池和袋式电池级别的商用石墨阳极配对,在 300 次循环后,全电池容量保持率分别高达 72% 和 78%。我们将这种出色的循环稳定性归功于对电池组件和测试条件的精心优化,特别注重提高电子电导率和高压兼容性。这些结果表明,精确控制材料质量、电极结构和电解质优化很快就能支持基于厚 LNMO 阴极(> 4 mAh \xe2\x8b\x85 cm 2)的无钴电池系统的开发,这最终将满足下一代锂离子电池的需求,降低成本,提高安全性,并确保可持续性。'
风电场的设计和控制需要考虑在研究独立机器时通常会忽略的物理现象。事实上,大气流动与风电场之间以及风力发电厂本身内部都存在复杂的相互作用。此外,还应考虑上风风力涡轮机尾流对下游机器的功率和负载产生的影响,因为尾流是风电场中涡轮机之间耦合的主要形式,其影响通常对所收获的功率和结构载荷都有害。因此,需要研究在风力涡轮机和风电场层面的适当控制措施。CL-Windcon 项目将通过将整个风电场视为一个综合的实时优化问题来解决高级建模、开环和闭环控制算法。一些开发的控制算法的有效性将通过风洞测试进行验证。事实上,通过使用复杂的主动控制缩放风力涡轮机模型,人们可以在风洞中以较低的成本和风险进行具有监督和可重复边界条件的实验。