综合航空电子系统 – 诊断工具和数据传输标准 综合航空电子系统 – 诊断和数据传输标准 Andrzej Cieślik 空军技术学院 6 Księcia Bolesława Street, 01-494 华沙,波兰 andrzej.cieslik@itwl.pl 摘要:本文旨在介绍 AFIT 用于激活和测试综合航空电子系统中实施的硬件和软件的研究工具。特别关注了研究台(根据科学和高等教育部研发项目建造),旨在优化集成了数字数据总线的航空电子系统(根据 MIL-STD-1553B 和 ARINC-429 标准等)。还展示了用于测试软件的专用研究设备/测试装置,除其他外,还包括测试模式生成器(在辅助平视显示器(SHUD)的显示能力范围内)和信息效率测试仪(用于SHUD及其前置控制面板(UFCP))。关键词:综合航空电子系统、研究和测量设备。压力:W 参考 przedstawiono narzędzia badawcze wykorzystywane 和 ITWL (AFIT) do uruchomienia 和 testowania urządzeń oraz oprogramowania zaimplementowanego 和 zintegrowanych systemach awionicznych。 Szczególną uwagę poświęcono stanowisku badawczemu (zbudowanemu w ramach projektu badawczego rozwojowego MNiSW), przeznaczonemu do optymaliza
摘要:背景:运动的头部影响会导致脑损伤。通过仪器的胸罩(IMG)准确量化头运动学可以帮助识别有害影响期间的潜在脑运动。当前研究的目的是评估IMG在各种线性和旋转加速度上的有效性,以允许进行局部影响监测。方法:仪器头盔测试装置(ATD)的滴测试在一系列撞击幅度和位置进行,并同时收集了IMG测量。ATD和IMG运动学也被向前馈送到高度有限脑模型,以预测最大的主应变。结果:影响产生了广泛的头部运动学(16-171 g,1330–10,164 rad/s 2和11.3–41.5 rad/s)和持续时间(6-18毫秒),代表了橄榄球和拳击的影响。对ATD和IMG的峰值的比较表明一致性很高,峰值影响运动学的总和相关系数为0.97,预测的脑应变为0.97。我们还发现IMG和ATD测量的时间序列运动数据之间有良好的一致性,旋转速度(5.47±2.61%)的归一化均方根误差最高,旋转加速度最低(1.24±0.86%)。我们的结果证实,IMG可以在大量加速度下可靠地测量基于实验室的头运动学,并且适合将来的现场有效性评估。
便携式声学声纳浮标模拟器 II (PASS II) 是专为实验室声学系统集成和机载/海上声学系统操作验证而设计的测试装置。它是一种可现场使用的电子发射器、接收器和数据处理器。它模拟标准 NATO 声纳浮标信号,包括可选的环境条件。它提供命令信号生成 (CSG) 和命令功能选择 (CFS) 功能。它支持可变强度的基带刺激以及数据流。PASS II 发射器还可用于测试飞机上使用的顶部位置指示器 (OTPI) 系统。PASS II 使用数字信号处理器 (DSP) 为各种受支持的声纳浮标类型提供信号合成。所有测试信号均使用全数字架构开发,然后以数字形式用于调制输出 RF。测试信号不会转换为模拟信号来调制 RF,这确保了 PASS II 提供高保真度、准确、无伪影的测试信号。测试信号以模拟形式提供,用于直接声学处理器输入和听觉监控。直接数字合成 (DDS) RF 发生器产生 RF 输出。DSP 产生包含所需频率和所需信号输出的数字数据,并直接输入 RF 合成设备以产生信号。基带和 RF 频率的产生精度在 0.003% 以内
摘要 — 激光交联可提供高数据速率通信和精确时间传输与测距,使用小尺寸、重量和功率 (SWaP) 终端来实现小型卫星星座。立方体卫星激光红外交联 (CLICK) 任务将演示能够进行全双工、高数据速率交联并实现低地球轨道 (LEO) 上 3U 立方体卫星高精度测距的终端。初始风险降低任务 CLICK-A 将演示至少 10 Mbps 的下行链路到 28 厘米孔径光学地面站。CLICK-B 和 CLICK-C 将随后演示激光交联,数据速率至少为 20 Mbps,间隔距离从 25 公里到 580 公里。CLICK-B/C 任务还将演示优于 50 厘米的高精度测距。实现这些能力的关键是发射机和精细指向、捕获和跟踪 (PAT) 系统的性能。我们介绍了最近对发射器和 PAT 子系统的测试和特性分析结果。发射器的测试包括确认种子激光器和半导体光放大器 (SOA) 的输出功率和调制,以及表征输出脉冲形状。对于 PAT 系统,测试重点是表征用于闭环精细 PAT 序列的象限光电二极管的噪声。该测试是使用专用的硬件在环测试台和光学测试装置进行的。CLICK-A 预计将于 2022 年 5 月之前发射,并于 2022 年 6 月从国际空间站 (ISS) 部署,而 CLICK-B/C 预计将于 2022 年底发射。索引术语 — 激光、光学、交联、卫星间、立方体卫星、通信
美国特种部队在执行任务时使用高速滑行艇。这些船只的运行,特别是在波涛汹涌的大海中,会使乘员遭受严重的机械冲击,这会导致急性和慢性损伤的发生率显著增加。尽管许多政府和民间组织在过去十多年里对这个问题的各个方面进行了研究,但舰队尚未实施有效的解决方案。为了解决这个问题,加利福尼亚州圣地亚哥的海军特种作战司令部指挥官向麻省理工学院海洋工程系转发了一份请求,要求对该问题进行研究。本论文的目的是对这个问题进行全面分析,研究可以缓解问题的方法,并开发和验证冲击缓解系统的实验室设计、测试和评估方法。首先,对船体和航道之间的流体动力学相互作用以及这种相互作用如何导致机械冲击的产生进行理论和实证研究。在典型操作条件下,从船只上获取实际加速度数据,并从以前的研究中获取其他类似数据。第二,研究机械冲击和振动导致急性和慢性损伤的机制。回顾过去的人体和动物试验,以及人体的传递性和机械阻抗信息。这类信息以及其他伤害数据汇编研究有助于现有的伤害预测。第三,研究可以减轻高速船上机械冲击暴露的方法。确定可以实现冲击缓解的界面(例如船体-航道),并讨论现有或概念上的冲击缓解系统。此外,还讨论了减少冲击暴露影响的操作方法(例如培训)。最后,制造了一个实验室跌落台装置,用于冲击缓解系统的设计、测试和评估。该测试装置通过成功再现高速船上经历的冲击事件以及出色的可重复性和可控性得到验证。
主要领域:机械与航空航天工程 摘要:近年来,UAS(无人机系统)通过集成先进的摄像机、传感器和硬件系统获得了改进的功能;然而,UAS 仍然缺乏检测和记录音频信号的有效手段。这部分是由于硬件的物理规模和硬件集成到 UAS 中的复杂性。当前的研究是将高增益抛物面麦克风集成到 UAV(无人机)中用于声学勘测的更大规模研究工作的一部分。由于嵌入式抛物面天线与自由流掠流之间的气动相互作用,需要使用挡风玻璃将天线整平到飞机上。当前的研究开发了一种表征方法,通过该方法可以优化各种挡风玻璃的设计和配置。该方法测量候选挡风玻璃的法向入射声传输损耗 (STL) 以及其在一系列流速下安装时产生的流体动力噪声的增加。在俄克拉荷马州立大学的低速风洞上设计并安装了测试装置。测试设备使用附在风洞测试段地板上的“静音箱”。风洞测试段和静音箱之间的直通窗口允许在两个环境之间安装候选挡风玻璃。安装在风洞测试段和静音箱内的麦克风记录各种流速下的声谱,范围在每秒 36 至 81 英尺之间。制造了一个张紧的 Kevlar® 挡风玻璃验证样本来验证系统性能。STL 频谱是通过比较 Kevlar® 膜两侧麦克风的信号来测量的。将流离场景的法向入射 STL 结果与其他研究中对相同材料在张紧状态下的结果进行比较。在几种流速下还测量了流入传输损耗频谱数据以及膜引起的流动噪声的增加。该系统已被证明可以产生与流入和流离测试配置的参考数据一致的 STL 数据,并且能够检测到验证样本挡风玻璃产生的流动诱导噪声的增加。
北京北京大学。摘要有几份压力会导致记忆力障碍。的研究表明,Cyperus Rotundus(C. rotundus)提取物可改善记忆并增强信息检索。在当前的研究中,研究了水合醇曲霉提取物对应激诱导的记忆检索损伤的改善影响。在这项研究中,成年男性实验室小鼠分为两组:压力和无压力,这些组进一步分为两个亚组:接受盐水的对照组和用圆孢杆菌提取物治疗的对照组。首先,小鼠通过烤21或7天接受了物质。最后一场饲料后的一天,使用被动回避记忆测试装置对动物进行了训练,在教学后24小时,它们会受到急性压力并立即进行记忆测试。进入黑暗房间的潜伏期和设备暗室中度过的时间被记录为被动回避记忆检索的量度。根据获得的发现,预测试应力大大减少了进入黑暗房间的潜伏期,并增加了在黑暗房间中所花费的时间。提取物的预训练疗法扭转了进入的潜伏期,也大大减少了在黑暗房间中所花费的时间。看来,C. rotundus的水醇提取物提高了从长期记忆中检索信息的能力,并减少了急性应力对记忆检索的破坏性影响,具体取决于消费时间。Int J Pharm Phytopharmacol Res。关键词:水醇提取物,圆形圆形,记忆,急性应力eijppr 2024; 14(6):1-8如何引用本文:Hu D,Gao J,Yang X,Liang Y.研究cyperus rotundus hydalcololic提取物对小鼠急性应激引起的记忆检索障碍的影响。2024; 14(6):1-8。 https://doi.org/10.51847/etvpc80rsz
A400M ATA 27 飞行控制组件 III 级 按需提供 林登贝格 ATA 21/30/36 综合空气管理系统 I、II、III 级 按需提供 图卢兹 ATA 27 飞行控制组件 V 级 按需提供 林登贝格 ATA 52 舱门坡道和作动系统 III 级 按需提供 林登贝格 ATA 52 舱门坡道和作动系统 V 级 按需提供 林登贝格 SA/LR/A380/747-8 ATA 36 引气测试装置 GSE IV 级 按需提供 客户设施 波音 747-8 ATA 21/36 发动机引气和环境控制系统 I、II、III 级 6 月 18 日至 21 日 图卢兹 庞巴迪 CRJ1000 ATA 27 方向舵系统 III 级 按需提供 林登贝格 CRJ700/900/1000 ATA 21/30/36 综合空气管理系统 I、II、III 级 4 月 9 日至 11 日 图卢兹全球7000/8000 ATA 21/30/36 综合空气管理系统 一级、二级、三级 应要求 图卢兹 中国商飞 ARJ21 ATA 32 起落架系统 一级、四级 7 月 17 日和 18 日 林登贝格 ATA 32 起落架维修 四级 在机上 应要求 客户设施 ATA 21/30/36 综合空气管理系统 一级、二级、三级 应要求 图卢兹 C919 ATA 32 起落架系统 一级、二级、三级 应要求 林登贝格 ATA 32 起落架维修 四级 在机上 应要求 客户设施 ATA 21/30/36 综合空气管理系统 一级、二级、三级 应要求 图卢兹 巴西航空工业公司
A400M ATA 27 飞行控制组件 III 级 按需提供 林登贝格 ATA 21/30/36 综合空气管理系统 I、II、III 级 按需提供 图卢兹 ATA 27 飞行控制组件 V 级 按需提供 林登贝格 ATA 52 舱门坡道和作动系统 III 级 按需提供 林登贝格 ATA 52 舱门坡道和作动系统 V 级 按需提供 林登贝格 SA/LR/A380/747-8 ATA 36 引气测试装置 GSE IV 级 按需提供 客户设施 波音 747-8 ATA 21/36 发动机引气和环境控制系统 I、II、III 级 6 月 18 日至 21 日 图卢兹 庞巴迪 CRJ1000 ATA 27 方向舵系统 III 级 按需提供 林登贝格 CRJ700/900/1000 ATA 21/30/36 综合空气管理系统 I、II、III 级 4 月 9 日至 11 日 图卢兹全球7000/8000 ATA 21/30/36 综合空气管理系统 一级、二级、三级 应要求 图卢兹 中国商飞 ARJ21 ATA 32 起落架系统 一级、四级 7 月 17 日和 18 日 林登贝格 ATA 32 起落架维修 四级 在机上 应要求 客户设施 ATA 21/30/36 综合空气管理系统 一级、二级、三级 应要求 图卢兹 C919 ATA 32 起落架系统 一级、二级、三级 应要求 林登贝格 ATA 32 起落架维修 四级 在机上 应要求 客户设施 ATA 21/30/36 综合空气管理系统 一级、二级、三级 应要求 图卢兹 巴西航空工业公司
A400M ATA 27 飞行控制组件 III 级 按需提供 林登贝格 ATA 21/30/36 综合空气管理系统 I、II、III 级 按需提供 图卢兹 ATA 27 飞行控制组件 V 级 按需提供 林登贝格 ATA 52 舱门坡道和作动系统 III 级 按需提供 林登贝格 ATA 52 舱门坡道和作动系统 V 级 按需提供 林登贝格 SA/LR/A380/747-8 ATA 36 引气测试装置 GSE IV 级 按需提供 客户设施 波音 747-8 ATA 21/36 发动机引气和环境控制系统 I、II、III 级 6 月 18 日至 21 日 图卢兹 庞巴迪 CRJ1000 ATA 27 方向舵系统 III 级 按需提供 林登贝格 CRJ700/900/1000 ATA 21/30/36 综合空气管理系统 I、II、III 级 4 月 9 日至 11 日 图卢兹全球7000/8000 ATA 21/30/36 综合空气管理系统 一级、二级、三级 应要求 图卢兹 中国商飞 ARJ21 ATA 32 起落架系统 一级、四级 7 月 17 日和 18 日 林登贝格 ATA 32 起落架维修 四级 在机上 应要求 客户设施 ATA 21/30/36 综合空气管理系统 一级、二级、三级 应要求 图卢兹 C919 ATA 32 起落架系统 一级、二级、三级 应要求 林登贝格 ATA 32 起落架维修 四级 在机上 应要求 客户设施 ATA 21/30/36 综合空气管理系统 一级、二级、三级 应要求 图卢兹 巴西航空工业公司