15个典型的性能曲线。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 15.1辐射并进行了排放EN55032(CISPR-32)B类合规性。。。。。。。。。。。。。。。。。。11 15.1.1辐射排放EN55032(CISPR-32)B类符合测试设置。。。。。。。。。。。。。。。。11 15.1.2进行了排放EN55032(CISPR-32)B类符合测试设置。。。。。。。。。。。。。。。11 15.1.3辐射并进行了排放。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 15.2 DC性能曲线。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13 15.2.1效率。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13 15.3输出功率。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>13 15.4占空比I MOC。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。14 15.4.1温度估计I MOC。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 15.4.2输出电压公差信封。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15
本文进行了一项实验分析,重点是利用一种特定的测量技术来确定收缩的发展情况,并监测细粒水泥基复合材料在老化过程中的结构变化。设计并验证了先进的测量设备和程序,可以同时测量长度变化、质量损失、声学响应和温度发展。进行的实验的主要范围是寻找所研究特性之间的关系,同时保持统一的测试设置。为了进行实验测量,设计和制造了三种细粒水泥复合混合物。这些混合物的水灰比 (w/c) 和增塑剂的用量不同。测量输出以图表的形式呈现,显示了所研究参数之间的关系,例如复合材料固化过程中的相对长度变化、质量损失、温度变化和声发射 (AE) 活动。测量结果显示所检查的特性之间存在密切的关系。相对长度变化的进展以及质量损失和温度发展的进展都反映在 AE 活动中。先进的测量程序和技术提供了有关水泥基复合材料在早期凝固过程中的行为的宝贵信息
Embotech是一种屡获殊荣的软件扩展,开发了自动驾驶汽车的最前沿自动驾驶技术和解决方案,重点是私人地面应用,例如港口航站楼的卡车和工厂的乘用车。我们通过利用自2013年以来一直在开发的实时优化技术来提供安全的自主运输。我们正在寻找一个热情的实习生,渴望为我们的高级感知软件的开发做出贡献。,您将使用Embotech的自动驾驶软件堆栈和外部供应商的硬件组件来部署快速增长的自动驾驶卡车,以供私人场地迅速发展,从而发挥着重要作用。您的角色将涉及为自动卡车开发感知软件,并在模拟和Embotech的测试车中进行测试。责任•开发以私人场地自动驾驶的感知软件。•在测试设置(SIL/HIL)和现实生活中使用我们自己的测试工具进行测试软件。•分析日志数据并主动解决问题。•查看拉请请求。•与系统工程师,软件工程师和控制工程师合作,提供完整的自动驾驶堆栈。•根据需要前往客户或自己的测试区域。
摘要。最近提出的量子系统使用频率复用量子比特技术来读取电子器件,而不是模拟电路,以提高系统的成本效益。为了恢复单个通道以供进一步处理,这些系统需要一种解复用或通道化方法,该方法可以低延迟处理高数据速率,并且使用很少的硬件资源。本文介绍了一种使用多相滤波器组 (PFB) 信号处理算法的低延迟、适应性强的基于 FPGA 的通道器。由于只需设计一个原型低通滤波器来处理所有通道,因此 PFB 可以轻松适应不同的要求,并进一步简化滤波器设计。由于每个通道都重复使用相同的滤波器,与传统的数字下变频方法相比,它们还降低了硬件资源利用率。实现的系统架构具有广泛的通用性,允许用户从不同数量的通道、采样位宽度和吞吐量规格中进行选择。对于使用 28 系数转置滤波器和 4 个输出通道的测试设置,所提出的架构可产生 12.8 Gb/s 的吞吐量和 7 个时钟周期的延迟。
摘要:近年来,变分量子电路 (VQC) 在量子机器学习中的应用大幅增加。VQC 的灵感来自人工神经网络,它作为大规模参数化函数逼近器,在广泛的 AI 任务中实现了非凡的性能。VQC 已经通过利用量子计算中更强大的算法工具箱,在泛化和训练参数要求更少等方面取得了令人鼓舞的成果。VQC 的可训练参数或权重通常用作旋转门中的角度,而当前基于梯度的训练方法并未考虑到这一点。我们引入了 VQC 的权重重新映射,以将权重明确地映射到长度为 2 π 的区间,这从传统 ML 中汲取了灵感,其中数据重新缩放或规范化技术在许多情况下都表现出巨大的好处。我们使用一组五个函数,并以变分分类器为例,在 Iris 和 Wine 数据集上对它们进行评估。我们的实验表明,权重重新映射可以提高所有测试设置中的收敛性。此外,我们能够证明,与使用未修改的权重相比,权重重新映射可将 Wine 数据集的测试准确率提高 10%。
摘要:必须保证在完整的终生中保证锂离子电池的安全性,考虑到由可逆和不可逆的膨胀和降解机制引起的几何变化。对压力分布和梯度的理解是为了优化电池模块的必要条件,并避免局部退化承受与安全相关的电池变化的风险。在这项研究中,用300或4000 n的初始预紧力测量了两个新鲜锂离子袋细胞的压力分布。四个相同的细胞用300或4000 N预紧力在电化学上老化。在衰老期间测量了不可逆的厚度变化。衰老后,研究了可逆的肿胀行为,以得出关于压力分布如何影响衰老行为的结论。开发了一种新型的测试设置,以测量局部细胞厚度,而无需接触并高精度。结果表明,施加的预紧力影响了细胞表面的压力分布和压力梯度。发现压力梯度会影响不可逆肿胀的位置。患有较大压力变化和梯度的位置在厚度上有很大增加,并且在其可逆的肿胀行为方面受到影响。尤其是,所研究的细胞的边缘显示由压力峰引起的厚度较强。
摘要:本文探讨了在太阳能大量利用的社区中,以交易能源方式使用电池储能。我们假设,独立行动的全自动代理(一些配备电池储能)之间的有效市场互动可以节省账单并改善电力流,而无需提前明确优化电力流。使用九个典型住宅生产消费者和一个重载生产消费者的测试设置。重载生产消费者最初会遇到多次欠压违规,并安装了一个 13.5 kWh 电池来缓解该问题。比较了两种配置文件塑造策略。第一种方案使用贪婪控制来最大化自给自足,而第二种方案使用本地市场来实现参与者之间的能源交易,并使用基于规则的交易和管理代理进行控制。结果表明,第一种方案对电力流的改善很小,但第二种方案消除了所有欠压违规的发生。此外,电网的总能源消耗量减少了 24.3%,而注入电网的能源消耗量减少了 39.2%。这导致每个参与者的电费降低,整个社区的电费减少了 16.7%。
Embotech是一种屡获殊荣的软件扩展,开发了自动驾驶汽车的最前沿自动驾驶技术和解决方案,重点是私人地面应用,例如港口航站楼的卡车和工厂中的乘用车。我们通过利用自2013年以来一直在开发的实时优化技术来提供安全的自主运输。我们正在寻找一名热衷于使真实系统可靠地进行大规模工作的系统集成工程师。使用Embotech的自动驾驶软件和外部供应商的硬件组件,您将加入卡车系统团队在部署快速增长的自动驾驶卡车中发挥重要作用。您的角色将涉及组件开发以及在测试设置和我们的车辆上进行完整的系统设计,集成和测试。我们在一家快速发展的公司中提供了令人兴奋的工作,该公司具有诱人的条件和灵活的时间。Embotech在现代和动态的环境中开发创新产品,您可以期待国际氛围,具有高技能的同事,对卓越和效率充满热情。我们正在寻找高度积极进取的人来帮助我们解决当今最复杂的挑战之一,并使我们的公司履行更高的责任•硬件软件集成。•自动化软件部署。
真空中的热接触导率 Rob van Gils 1、Ruud Olieslagers 1、Mo Mirsadeghi 1、Joris Oosterhuis 1 1 飞利浦工程解决方案、机电一体化、热能、流动和控制 Rob.van.Gils@philips.com;Joris.Oosterhuis@philips.com;摘要 本研究调查了不同种类和材料的金属表面之间的宏观热接触导率。分析的目的是找到表面之间的有效传热系数,以帮助对此类接触进行热建模。创建了一个装置,其中两个金属样品可以在 0.2 – 25 MPa 的接触压力下以 50 mm 2 的接触尺寸压在一起。虽然结果与文献有较好的重合度,但在某些测试设置下,与一些常用模型(如 Yovanovic [1,2] 和 Garimella [5] 的模型)的匹配度也较差(偏差可能高达 600%)。这表明,需要正确理解这些模型的有效范围以及真空接触传热现象,而不是应用现有的模型。此外,在某些情况下,观察到高达 100% 的重新接触不可重复性(与文献来源一致),在分析具有主要热接触阻的模型时应考虑到这一点。热接触导率、测量、真空、建模、
本文介绍了对 FLEXOP 演示飞机进行的地面测试活动。进行的测试分为结构、飞行系统和集成测试。除了描述测试设置和测试执行之外,还给出了主要发现和结论。结构测试包括静态、地面振动和适航性测试。静态和地面振动测试用于对制造的机翼和整个机身进行结构表征。本文还介绍了用于机翼形状和负载重建的光纤布拉格应变传感系统的评估和校准。适航性测试用于证明制造的机翼在指定极限载荷下的结构完整性。在飞行系统测试的背景下,简要介绍了机载自动驾驶仪硬件软件系统的主要组件,包括从 RC 发射器到飞机控制器的信号数据流、基线自动驾驶仪软件的功能以及与地面站的通信。所有这些组件都集成到硬件在环环境中,并简要介绍了伺服电机识别和硬件延迟测量。在设计基线和颤振控制器时考虑了测量的硬件延迟。在软件在环环境中,颤振控制器与基线控制器一起进行了测试。最后介绍系统集成测试。在此背景下,介绍了空气制动器、发动机、电子元件的兼容性、航程和滑行测试。