随着新技术和新技巧的采用,信息技术 (IT) 世界几乎不断发生变化。软件测试人员(无论是按头衔还是在实践中)必须快速适应并能够利用他们的技能来应对新挑战。然而,基本技能和知识保持不变,作为可以添加新信息的核心理解。为了便于阅读,“软件测试人员”一词将用于指代任何测试软件的人,无论他们的正式角色如何。本大纲重点介绍软件测试所需的基本领域,无论使用的技术、生命周期或工具如何。一些项目可能会使用更多或更少的这些技能领域,但所有软件测试人员都需要了解和掌握这套核心技能。顾名思义,本大纲涵盖了“基本知识”。本大纲应被视为其他认证和知识领域的跳板。作为 AT*SQA 符合 ISO 标准的产品的一部分,认证必须与时俱进,并在规定的时间范围内完成额外的学习。有关更多详细信息,请参阅 AT*SQA 的网站。这有助于软件测试人员继续扩展他们的知识和市场能力,并承认软件测试行业对继续教育的真正需求。
IDATA 是一个由美国国家科学基金会资助的 250 万美元项目,旨在推进天文学计算和计算思维相关教学和学习的最佳实践知识。该项目旨在了解参与如何影响学生对谁可以参与 STEM 和计算的态度和信念。该项目汇集了盲人和视障 (BVI) 和视力正常的高中和初中学生及其教师,以创建一个完全可访问的天文学数据检索和分析软件工具。IDATA 团队利用以用户为中心的设计流程和迭代方法来开发和测试软件和模块,从而为那些患有 BVI 相关残疾的人改善我们神奇宇宙的访问权限。AUI 与 TERC(STEM 教育评估中心)、日内瓦湖天体物理学和 STEAM、林德研究与开发公司、北卡罗来纳大学教堂山分校、内华达大学拉斯维加斯分校等机构合作,使 IDATA 成为可能。
本文旨在介绍 ITWL 用于激活和测试集成航空电子系统中实施的硬件和软件的研究工具。特别关注了研究台(根据科学和高等教育部研发项目建造),旨在优化集成了数字数据总线的航空电子系统(根据 MIL-1553B 和 ARINC-429 标准等)。还介绍了用于测试软件的专用研究设备/测试设备,除其他外,还包括测试模式生成器(在辅助平视显示器 (SHUD) 的显示能力范围内)和信息效率测试器(用于 SHUD 和其前部控制面板 (UFCP))。本文介绍了 Sextant Avionique 的 STRATUS 型导航系统的架构、实验室支架的工程完成情况、在数字数据总线 MIL-STD-1553B 上优化综合航空电子系统的实验室设备、实验室支架的研究能力和优化综合航空电子系统的设备、集成过程中使用的实验室支架面板、用于优化综合航空电子系统的附加研究工具、用于优化综合航空电子系统软件的典型研究工具:SHUD/UFCP 测试仪)和多功能显示器 (MFD) 测试仪。
Embotech是一种屡获殊荣的软件扩展,开发了自动驾驶汽车的最前沿自动驾驶技术和解决方案,重点是私人地面应用,例如港口航站楼的卡车和工厂的乘用车。我们通过利用自2013年以来一直在开发的实时优化技术来提供安全的自主运输。我们正在寻找一个热情的实习生,渴望为我们的高级感知软件的开发做出贡献。,您将使用Embotech的自动驾驶软件堆栈和外部供应商的硬件组件来部署快速增长的自动驾驶卡车,以供私人场地迅速发展,从而发挥着重要作用。您的角色将涉及为自动卡车开发感知软件,并在模拟和Embotech的测试车中进行测试。责任•开发以私人场地自动驾驶的感知软件。•在测试设置(SIL/HIL)和现实生活中使用我们自己的测试工具进行测试软件。•分析日志数据并主动解决问题。•查看拉请请求。•与系统工程师,软件工程师和控制工程师合作,提供完整的自动驾驶堆栈。•根据需要前往客户或自己的测试区域。
人工智能 (AI) 正在医疗、军事、工业、家庭、法律、艺术等多个领域产生重大影响,因为 AI 能够执行多种角色,例如管理智能工厂、驾驶自动驾驶汽车、创建准确的天气预报、检测癌症和个人助理等。软件测试是测试软件是否存在某些异常行为的过程。软件测试是一个繁琐、费力且最耗时的过程。已经开发了自动化工具,有助于自动化测试过程的某些活动,以提高质量和及时交付。随着时间的推移,随着持续集成和持续交付 (CI/CD) 管道的加入,自动化工具的效率正在降低。测试社区正在转向 AI 来填补这一空白,因为 AI 能够在没有任何人工干预的情况下以比人类更快的速度检查代码中的错误和错误。在这项研究中,我们旨在认识到 AI 技术对 STLC 中各种软件测试活动或方面的影响。此外,该研究旨在识别和解释软件测试人员在将 AI 应用于测试时面临的一些最大挑战。论文还提出了未来人工智能对软件测试领域的一些关键贡献。
- 支持 IT 服务生命周期系统管理的所有阶段并为 IT 研究做出贡献; - 为 NATO C2 应用程序和服务提供快速的技术支持服务,包括紧急故障排除和现场援助(在北约和国家站点),以确保关键信息系统保持运行; - 负责维护和升级与支持系统相关的文档; - 提供数据收集和分析方面的帮助(例如关键绩效指标); - 支持流程和软件部署自动化; - 协助系统和服务向运行环境的服务过渡; - 使用可用工具使用相关软件工程技术和方法实施、记录和测试软件以支持完整的软件生命周期; - 遵循既定的质量、配置控制、测试、文档和安全程序,支持授权软件更改、相关应用软件和供应商提供的组件的集成/定制的分析、设计、实施和维护; - 协助准备文件和报告,偶尔进行简报和演示; - 与 NCI 机构服务线内部和之间的其他项目的同行互动,并提供指导和专业知识; - 协助将系统部署到操作环境中; - 如果需要,代表更高级别的员工 - 执行可能需要的其他职责。
综合航空电子系统 – 诊断工具和数据传输标准 综合航空电子系统 – 诊断和数据传输标准 Andrzej Cieślik 空军技术学院 6 Księcia Bolesława Street, 01-494 华沙,波兰 andrzej.cieslik@itwl.pl 摘要:本文旨在介绍 AFIT 用于激活和测试综合航空电子系统中实施的硬件和软件的研究工具。特别关注了研究台(根据科学和高等教育部研发项目建造),旨在优化集成了数字数据总线的航空电子系统(根据 MIL-STD-1553B 和 ARINC-429 标准等)。还展示了用于测试软件的专用研究设备/测试装置,除其他外,还包括测试模式生成器(在辅助平视显示器(SHUD)的显示能力范围内)和信息效率测试仪(用于SHUD及其前置控制面板(UFCP))。关键词:综合航空电子系统、研究和测量设备。压力:W 参考 przedstawiono narzędzia badawcze wykorzystywane 和 ITWL (AFIT) do uruchomienia 和 testowania urządzeń oraz oprogramowania zaimplementowanego 和 zintegrowanych systemach awionicznych。 Szczególną uwagę poświęcono stanowisku badawczemu (zbudowanemu w ramach projektu badawczego rozwojowego MNiSW), przeznaczonemu do optymaliza
测试和评估总体规划 (TEMP) 和 Block 3F 联合测试计划 (JTP) 中的累积测试内容,该计划在签署这些文件时完全同意这些内容是必需的。该计划计划“隔离”计划由测试中心飞行的 JTP 累积测试点,而是直接跳到最近设计的复杂毕业级任务效能风险降低测试点,以快速抽样完整的 Block 3F 性能。然后,如果任何 Block 3F 功能在复杂测试点期间似乎正常工作,该计划将删除适用于这些功能的底层累积测试点并将其指定为“不再需要”。但是,该计划必须确保替代数据适用,并在删除任何底层累积测试点之前提供足够的统计信心,证明测试点目标已经得到满足。虽然这种方法可以提供对 Block 3F 功能的快速抽样评估,但存在很大的风险。多个最新的飞行测试软件版本可能会阻止程序使用旧版本软件的数据来计算基线测试点删除,因为它可能不再代表 Block 3F。西部试验场的可用性有限且成本高昂,再加上在该靶场完成的测试任务的重飞率很高,使得程序难以有效地进行这种测试。最后,最复杂的能力
背景:第三级RNA结构的预测对医学领域(例如Messenger RNA [mRNA]疫苗,基因组编辑)和病毒转录物的探索很重要。尽管存在许多RNA折叠软件程序,但很少有研究仅将其关注的源头简化为病毒式Pseudoknotted RNA。这些调控假诺在基因组复制,基因表达和蛋白质合成中起作用。目的:本研究的目的是探索5个RNA折叠引擎,该发动机用于计算最低自由能(MFE)或最大期望准确性(MEA),当应用于先前使用诱变,序列比较,结构探测,结构探测,或核磁共振(NMR)的特定病毒式Pseudoknotted RNA。方法:对本研究中使用的折叠发动机进行了26次实验得出的短伪序列(20-150 nt),使用在测试软件预测准确性时很常见的指标:百分比误差,平均平方误差(MSE),敏感性,敏感性,敏感性,积极的预测值(PPV),Youden的INDEX(Youden's Intex(j)和f 1-score。本研究中使用的数据集来自包含398个RNA的pseudobase ++数据库,该数据库使用PRISMA(系统审查和荟萃分析的首选报告项目)的一组包含和排除标准进行了评估。在Mathews的参数之后,给定RNA序列内的基本配对被认为是正确或不正确的。结果:本文与以前的软件的迭代相比,与较旧的折叠引擎相比,RNA预测引擎具有更高的精度,例如PKISS。本文还报道说,当使用诸如F 1 -SCORE和PPV等指标评估时,MEA折叠软件并不总是以预测准确性的MFE折叠软件,而当应用于病毒式PseudokNotted RNA时。此外,结果表明,如果不应用辅助参数,例如Mg 2+结合,悬挂式最终选项和发夹型惩罚,则热力学模型参数将无法确保准确性。结论:这是将一套RNA折叠发动机套件应用于仅包含病毒式伪KNOTED RNA的数据集的首次尝试。本文报道的观察结果突出了不同的从头算预测方法之间的质量,同时实施了这样一种想法,即对更有效的RNA筛选更有效地了解细胞内热力学是必要的。
在2021年进行的轨道尝试远远超过历史上的任何一年(1)。世界各地的公司和政府尝试了146次飞行,拥有135台成功的轨道。2022年的前六个月看到了这一趋势继续以72次成功的飞行。和2021年打破了先前在1967年在太空竞赛高峰期创下的139次尝试的记录,因为苏联和美国竞争激烈地到达太空。2020年代的太空竞赛包括两国不仅包括两个国家 - 现在推出了美国,英国,欧洲,俄罗斯,中国,印度,土耳其,伊朗,以色列等。,种族不再是政府项目;许多私人太空公司都在竞争,将大量的投资者资金带入了市场。新的火箭技术正在实现太空发射的这种激增。SpaceX在2021年启动了31个Falcon 9任务,所有这些任务都成功。他们的新型火箭设计方法使他们能够使用先前使用的火箭核来启动所有这些任务 - 仅引入了两个新的Falcon 9第一阶段来支持这些发射。随着这些公司和国家继续投资,使太空推出更加可靠,可重复使用和负担得起的发射次数和这些发布的范围将继续增加。支持这些发射的基础架构也在增加。有35个主动太空港和发射设施可以支持轨道,轨道和轨道外部任务。地点列表跨越了全球,包括所有大洲和13个国家(2)。其他国家现在正在建立新的设施。和其他站点用于测试从这些设施发射的火箭。这是成为空间行业一部分的激动人心的时刻。FAA监管火箭发射,用于美国公民或实体的任何发射(3),用于美国土壤或美国以外的任何发射。其他国家也有类似的法规和监管机构。如果不遵守适当的工程步骤,公司就无法进入太空。这些关键步骤之一是测试火箭车,并证明它具有很高的成功。测试火箭首先测试火箭的各种组件。工程团队分别测试将构成结构,燃料和电子产品的材料和组件。这些组件然后作为子系统组装并测试,并最终完全组装成一个完整的阶段级接受测试。ni产品用于车辆的所有方面。静态和疲劳结构测试平台(4)是测试燃油箱强度以在飞行压力中生存的理想选择。ni的基于PXI的模块化仪器和自动测试软件为测试航空电子电路提供了强大的平台。ni的LRU HIL测试体系结构(5)是生成各种测试用例测试航空电子控制器的理想选择。在ni.com/space上了解有关这些和其他解决方案的更多信息。本文着重于测试火箭发动机,但许多元素也将适用于最终的全车测试。,但测试提供了超越符合法规的价值。NASA报告火箭发动机测试是测试所有火箭发动机类型的重要组成部分;需要此测试才能符合FAA法规。