结合我们经过实地验证的 VME 主机技术与最近开发的 VME 子系统技术,我们能够推出一种更高效、更全面、更经济的方法来升级常用的仪表级雷达系统。VME 升级将现有硬件替换为新的最先进的基于 VME 的计算机、磁盘驱动器、串行接口、操作员通信计算机 (OPCOM) 和特定的 VME 接口卡,以模拟现有的总线控制器。从主机 VME 计算机升级开始,BAE Systems 提供了一个扩展基础平台,以满足长期需求。利用商用现货 (COTS) 板和“C”语言,可以轻松维护和升级新计算机系统。这条新产品线专为 RIR 系列基于计算机的仪表雷达系统的电子子系统升级而量身定制。
1921 第一台便携式光机经纬仪 1925 第一台航空摄影相机 1969 第一台红外测距仪 1984 第一台测量用 GPS 1991 第一台工业激光跟踪仪 1993 第一台手持式激光测距仪 2004 第一台通用 GPS/TPS 系统 - Leica System 1200 第一台移动式 CMM - Leica T-Probe 和 Leica T-Scan 2005 第一台集成 GPS 的全站仪 - Leica SmartStation 2008 第一台面向未来的 GNSS 系统 - Leica GPS1200+ 2009 第一台带数字彩色显示屏和倾斜传感器的手持式激光测距仪 - Leica DISTO D5 2011 第一台脉冲频率为 500 KHz 的机载激光扫描仪 - Leica ALS70 2012 第一台采用 WFD 技术的 3D 激光扫描仪 - Leica ScanStation P20 2013 第一台 MultiStation - Leica Nova MS50
LiDAR是在1960年Theodore Maiman发明红宝石激光器之后才被广泛认可的,从技术革新来看,LiDAR经历了四个阶段。1960年,Theodore Maiman和他的同事在休斯研究实验室将高功率闪光灯照射在红宝石棒上,触发了一束相干光:第一束激光器。由于激光具有亮度好、方向性好、抗干扰等特点,激光技术被广泛应用于测距。与一般的测量方法相比,它具有精度高、分辨率高、体积小、使用方便、全天候等优点,在对地观测、环境监测、侦察等领域发挥着重要作用。同其他技术一样,激光也引起了军方的重视,很快美国军方就开始了军用激光装置的研究,第一台军用激光测距仪在1961年通过了军方试验,很快就投入了实用化。1971年,美国军方首创了世界上第一台红宝石激光测距系统:AN/GVS-3,这台第一代测距仪由光电倍增管探测器和红色外宝石光激励器组成,由于存在体积大、重量重、功耗大等缺点,很快就被第二代测距系统所取代,该测距系统采用近红外钕激光器(主要是Nd:YAG激光器)和PIN光电二极管或雪崩光电二极管,体积更小,功耗更低。随着这项技术的日趋成熟,随着20世纪70年代YAG激光技术的成熟,应用于长、中、短程激光测距雷达已成为必然趋势,1977年美国研制成功第一台手持式小型激光测距仪。 Nd:YAG激光测距仪:AN/GVS-5型,特点:尺寸与标准7-50军用望远镜相当,总重量只有2kg,适合手持使用,20世纪70年代末到80年代中期,激光测距仪成为军用激光市场上最大的采购项目[10]。起初激光测距主要用于军事和科研,在工业仪器中很少见,因为激光测距传感器太贵,一般在几千美元,高昂的价格一直是阻碍其广泛使用的主要原因。然而,由于技术的重大进步,价格已降至几百美元,使得它有可能成为一种具有成本效益的测量仪器。
wems.com › uploads › 2020/08 PDF 航空母舰的大型电子设备舱可能会造成干扰,导致起飞或降落失败。... VHF 全向测距仪 (VOR) 是。
• 激光测距仪/指示器为地面机动旅指挥官提供了进行协同 HELLFIRE 导弹交战的能力。• Shadow RQ-7BV2 由以下主要部件组成: - 四架小型高翼无人机,每架都配备光电 (EO)/红外 (IR) 有效载荷。四个 EO/IR 有效载荷中的两个配备了激光测距仪/指示器功能。RQ-7BV2 飞机比 RQ-7BV1 型号更大,主要是通过延长机翼改装将飞机的翼展从 14 英尺增加到 20.4 英尺,增加了额外的燃料容量,并将飞机重量从 375 磅增加到 460 磅。- 两个地面控制站被指定为通用地面控制站 (UGCS),每个都配备通用地面数据终端 (UGDT)。- 一个便携式地面控制站 (PGCS),配备便携式地面数据终端 (PGDT)。- 每架飞机都配备集成式单通道地面和机载无线电系统 (SINCGARS) 通信中继功能。- 两个单系统远程视频终端 (OSRVT)。• Shadow 单位是一个排级组织,授权人员为 27 人。• 飞机使用液压/气动发射器,并使用战术自动着陆系统在跑道上回收。拦阻索/拦阻钩系统缩短了必要的跑道着陆长度。
成长路径 MTS 系统专为多种成长选项而设计,例如多波长传感器、电视摄像机(近红外和彩色)、照明器、护眼测距仪、点跟踪器和其他航空电子设备。先进的电子和光学设计通过附加电路为图像融合和其他性能增强提供了清晰的成长路径。凭借这些技术成长路径,MTS 系统将继续成为世界上最先进的 EO/IR 多用途系统。MTS-B 已从成功的 AN/AAS-52 系列传感器中特别改编为高空应用。
(EOS、雷达、数字地图等)ESM 套件 EOS(日光和红外摄像机、激光测距仪) HMSD(头盔瞄准显示器) 带 ISAR 模式的 360 度雷达 Link 11 SONICS 系统,结合了吊放声纳和声纳浮标管理 1 或 2 个任务控制台 自我保护套件(弹道保护、箔条和照明弹) IFF 询问器 数字地图生成器 2 枚 Marte 导弹(MK2/S 或 MK2 ER) 2 枚鱼雷(MU90、MK46、Stingray) 混合配置(1x 鱼雷 + 1x 导弹) 枢轴机枪 自动折叠系统(叶片和尾翼)
• 热航向跟踪传感器:冷却式 MWIR、可变 FOV 的 FLIR、高帧率、低延迟、高灵敏度 • 精细跟踪传感器:NIR、高帧率、极窄 FOV 和低延迟 • 激光照明单元 (LIU):NIR 波段的光纤耦合激光二极管 • 日视:主要用于监视功能的彩色变焦摄像机 • LRF 接收器:大型激光测距仪接收器光电二极管
传感器灵活性 • 10 个传感器有效载荷 • 提供 6 种独立数字成像模式和 4 种离散激光功能 • 精密变焦低光和高清彩色光学元件,用于态势感知 • 长距离低光、高清彩色和短波红外 (SWIR) 观察镜光学元件,用于白天和夜晚的正面目标 ID • 激光照明器、双模测距仪/指示器和点跟踪器 • 多视场 640x512 中波红外,可选 1280x1024 高清中波红外
附件 10 第 I 卷是一份技术文件,其中规定了国际航空器运行所需的系统,这些系统为航空器在飞行的所有阶段提供无线电导航辅助设备。本卷的标准和建议措施 (SARP) 和指导材料列出了无线电导航辅助设备的基本参数规范,例如全球导航卫星系统 (GNSS)、仪表着陆系统 (ILS)、微波着陆系统 (MLS)、甚高频 (VHF) 全向无线电测距仪 (VOR)、无方向性无线电信标 (NDB) 和测距设备 (DME)。本卷中包含的信息包括功率要求、频率、调制、信号特性和监控等方面,以确保配备适当设备的航空器能够以所需的可靠性接收世界各地的导航信号。