被动射频 (RF) 测距是一种全天候现象,可以精确跟踪地球同步轨道 (GEO) 带及更远范围内的主动发射卫星。与光学望远镜不同,被动射频测距不受云层或日光的限制。与雷达不同,被动射频测距不受地球表面与 GEO 带之间较大距离的限制。由于使用来自近距离物体 (CSO) 的独特射频信号,被动射频测距也不太容易受到交叉标记的影响。被动射频测距的唯一要求是卫星发射的射频信号可以同时被三个地理位置不同的地面天线接收。因此,被动射频测距是空间域感知 (SDA) 工具包中第三个有价值的现象。
夜间可视化需要使用孔径为 20 至 30 厘米的望远镜。由于直径为 20 厘米的空间碎片激光组件的出口孔径符合与孔径相关的规格,因此可以使用安装在空间碎片激光组件中的卫星摄像机进行夜间引导。对于具有比卫星摄像机的 FOV(视场)更大的角度偏移的目标的可视化,可以使用 Stare & Chase 望远镜。即使是夜间可以使用空间碎片激光系统测距的最小物体,也可以在两个摄像机中可视化。假设反射率为 20%,距离 600 公里的直径为 10 厘米的球形物体的亮度将为 11 mag。距离 1400 公里的直径为 50 厘米的球形物体将具有类似的亮度。对于最暗的物体,积分时间必须增加到几十分之一秒。
全球定位系统,由 24 颗绕地球运行的卫星及其在地球上的相应接收器组成的全球卫星导航系统,它为全球提供了确定位置、速度和时间的实用且经济实惠的方法。卫星在距地面约 12,000 英里处绕地球运行,每 24 小时绕地球运行两次。GPS 卫星不断向地面接收器发送包含卫星位置数据和准确时间的数字无线电信号。卫星配备了精确到十亿分之一秒的原子钟。根据这些信息,接收器知道信号到达地面接收器需要多长时间。由于每个信号都以光速传播,接收器接收信号的时间越长,卫星距离就越远。通过了解卫星的距离,接收器就知道它位于以卫星为中心的假想球体表面的某个位置。通过使用三颗卫星,GPS 可以根据三个球体的交点计算接收机的经度和纬度。通过使用四颗卫星,GPS 还可以确定高度。GPS 由美国国防部 (DOD) 开发和运营。它最初被称为 NAVSTAR(带定时和测距的导航系统)。在民用之前,GPS 用于为军事提供全天候的导航能力
机载和地面激光扫描中的回波数字化和波形分析 ANDREAS ULLRICH,MARTIN PFENNIGBAUER,霍恩,奥地利 摘要 基于短激光脉冲飞行时间测距的激光雷达技术能够以所谓的点云形式获取准确而密集的 3D 数据。该技术适用于不同的平台,如地面激光扫描中的稳定三脚架或机载和移动激光扫描中的飞机、汽车和船舶。从历史上看,这些仪器使用模拟信号检测和处理方案,但专用于科学研究项目或水深测量的仪器除外。2004 年,一款用于商业应用和大量数据生成的激光扫描仪设备 RIEGL LMS-Q560 被推向市场,它采用了一种激进的替代方法:对仪器接收到的每个激光脉冲的回波信号进行数字化,并在所谓的全波形分析中离线分析这些回波信号,以便使用适用于特定应用的透明算法检索回波信号中包含的几乎所有信息。在激光扫描领域,从那时起就建立了一个不太具体的术语“全波形数据”。我们尝试对市场上发现的不同类型的全波形数据进行分类。我们从仪器制造商的角度讨论了回波数字化和波形分析中的挑战。我们将讨论使用这种技术所能获得的好处,特别是关于脉冲飞行时间激光雷达仪器所谓的多目标能力。
摘要 — 激光交联可提供高数据速率通信和精确时间传输与测距,使用小尺寸、重量和功率 (SWaP) 终端来实现小型卫星星座。立方体卫星激光红外交联 (CLICK) 任务将演示能够进行全双工、高数据速率交联并实现低地球轨道 (LEO) 上 3U 立方体卫星高精度测距的终端。初始风险降低任务 CLICK-A 将演示至少 10 Mbps 的下行链路到 28 厘米孔径光学地面站。CLICK-B 和 CLICK-C 将随后演示激光交联,数据速率至少为 20 Mbps,间隔距离从 25 公里到 580 公里。CLICK-B/C 任务还将演示优于 50 厘米的高精度测距。实现这些能力的关键是发射机和精细指向、捕获和跟踪 (PAT) 系统的性能。我们介绍了最近对发射器和 PAT 子系统的测试和特性分析结果。发射器的测试包括确认种子激光器和半导体光放大器 (SOA) 的输出功率和调制,以及表征输出脉冲形状。对于 PAT 系统,测试重点是表征用于闭环精细 PAT 序列的象限光电二极管的噪声。该测试是使用专用的硬件在环测试台和光学测试装置进行的。CLICK-A 预计将于 2022 年 5 月之前发射,并于 2022 年 6 月从国际空间站 (ISS) 部署,而 CLICK-B/C 预计将于 2022 年底发射。索引术语 — 激光、光学、交联、卫星间、立方体卫星、通信