MST-21 设计用于在很宽的电源电压范围内工作,可根据指令提供相干的接收器到发射器操作,并结合相干测距能力以实现精确导航。SpaceDev 指定 MST-21 与 NASA 的全球空间跟踪和数据网络 (STDN) 以及具有 STDN 功能的商业地面站提供商完全兼容,重量不到 1 公斤,尺寸仅为 17 x 11 x 5 厘米(约 7 x 4 x 2 英寸)。MST-21 配备高效的 30% 固态功率放大器 (SSPA),结合可指令的功率输出设置,确保其灵活适应变化的链路条件并支持各种地球轨道和近地任务。将进行测试以确保与各种运载火箭和空间热和辐射环境的兼容性。
在电子工程的工业和研究领域,距离信息被视为关键测量之一 [1]。为了获得准确可靠的距离数据,具有测距能力的设备现在广泛应用于军事和工业领域,包括红外 (IR) 和超声波测距仪。然而,使用这些传统的测距系统会出现许多准确性问题,因为它们对周围环境非常敏感,特别是当暴露于非结构化和不可预测的物理环境(灰尘、温度、烟雾)或结构混乱的环境(瓦砾、碎片等)时 [2]。因此,提出了一种更可靠的测距方法。激光二极管发射高度定向的光束,具有体积小、亮度高、颜色纯、能量密度高和效率高的优点 [3][4]。最重要的是,激光测距系统不易受到环境影响,因为可以通过测量反射和散射回波信号的时间间隔、频率变化和光束方向来获得目标的距离和方向。使用激光测距方法的测量误差仅为其他光学测距仪的五分之一到百分之一 [5]。相位激光测距法因其高精度而受到广泛欢迎,然而其应用问题也不容忽视,观测到在频率漂移、噪声、大气折射等影响下,可能由于相位折叠或相位模糊而出现接近零步进误差[6]。Barreto 等人采用了三角测量激光测距法,但其灵敏度要求严格且功耗高[7]。本文研制了一种微型、便携、低功耗的激光测距系统,具有两种测量模式:高精度模式和长距离模式。本文研制了一种微型便携式激光测距系统,具有两种测量模式:高精度模式和长距离模式。该系统基于 VL53L0X 飞行时间激光测距传感器和 STM32F407 微控制器 [8]。
1 简介 三维 (3D) 激光扫描仪多年来一直用于文化遗产、法医、3D 土地(地形)和“竣工”测量等应用。三维激光扫描仪使用安装在快速旋转头上的高速激光测距仪扫描环境,从而产生场景的高密度数字点云表示,可以根据需要进行存档和分析。通常,同轴安装的相机会同时记录全彩信息,以提供更逼真的 3D 图像。近年来,激光扫描仪的测距能力得到了提高,可以在数十米或更长的距离上实现亚毫米级精度和测距噪声。事实上,美国国家标准与技术研究所 (NIST) 最近报告称,他们开发了一款精度为 10 µm、测量范围为 10.5 m 1 的 3D 扫描仪。精度的提高,加上高价值制造业以及逆向工程和工厂维护等应用对以相对较低的成本快速获取高质量数据的要求不断提高,促使三维激光扫描仪从测量应用转向工程应用。随着 3D 激光扫描仪技术的普及和对精度要求的不断提高,对校准、性能验证和测量可追溯性的需求也随之增加。非接触式光学测量系统的校准和可追溯性问题非常复杂,不仅限于仪器本身系统误差的校准和补偿。例如,由于扫描激光与被扫描物体的材料和表面特性之间的相互作用以及激光束与表面的入射角,可能会出现显著的系统误差。然而,对于本文考虑的 3D 激光扫描仪类别,测距精度水平取决于仪器的几何误差和激光测距系统的精度。激光测距系统的校准相对简单,可以使用例如校准的长度工件或更精确的坐标测量系统(如激光跟踪器)或通过与参考干涉仪进行比较来进行。但是,没有涵盖激光扫描仪校准或性能验证的文献标准。在本报告的第 2 部分中,我们简要描述了激光扫描仪几何误差的数学模型。此外,NIST 进行的体积性能测试表明,校准后系统误差仍然很明显,这些误差可以归因于对几何对准误差的不完全补偿 2, 3 。因此,需要改进这些设备的校准方式,以充分发挥其潜力。因此,国家物理实验室 (NPL) 对使用“网络方法”校准 3D 扫描仪几何误差的可行性进行了初步调查 - 该方法之前由 NPL 为激光跟踪器校准而开发 4, 5 。在第 3 节中,我们总结了用于校准仪器误差的网络方法。在第 4 节中,我们介绍了用于测试激光扫描仪的方法。第 5 节介绍了结果和观察结果,第 6 节介绍了最后的总结和结论。2 激光扫描仪的几何误差模型 图 1 显示了激光扫描仪内部几何形状的理想表示。安装在固定底座上的旋转平台承载着激光源和旋转镜组件;平台绕着竖轴 Z 旋转。激光源的对准方式是使激光束与旋转镜的旋转轴(称为过境轴 T )同轴对准。激光束在点 O 处从旋转镜反射,该点位于镜面与旋转轴 T 和 Z 的交点处。镜子相对于轴 T 倾斜 45°,使得激光束从镜子反射到 NZ 平面上的点 P,其中 ON 垂直于 OT。