目标:在临床上,tau蛋白测量通常依赖于免疫测定(IAS),其主要缺点是由于选择性和/或校准而缺乏因选择性和/或校准而导致的结果可比性。这强调了建立总TAU(T-TAU)测量的可追溯性链的重要性。这项工作的目的是为脑脊液(CSF)中T-TAU的绝对定量开发一个高阶候选参考测量程序(RMP)。方法:为了校准候选RMP并建立对SI单元的计量可营养性,采购了由高度纯化的重组蛋白组成的主要校准器。通过液相色谱和高分辨率质谱法(LC-HRM)评估其纯度,溶液中的蛋白质质量分数通过氨基酸分析(AAA)认证。获得了同位素标记的同位标记的同位素,以通过同位素稀释质谱法(IDM)在CSF中进行T-TAU绝对量化的候选RMP。校准混合物和质量控制(QC)材料是重量制备的,并进行了与CSF样品相同的制备工作流,然后进行
1 CEA,DES,IRESNE,核测量实验室,F-13108法国圣保罗 - 莱兹 - 杜兰斯2 ENEA,Lungotevere Grande Ammiraglio Thaon di Revel 76,Roma 000196,Roma 000196,意大利3 Caen S.P.A. Bagnols-Sur-Cèze30200,法国5 Orano集团,巴黎大街125号,Châtillon92320法国6 Orano La Hague,La Hague 50444,在Micado H2020项目的框架中,被动和主动的中子测量系统正在开发出核材料的核材料量不足的频率,并估算出了核材料的范围。已经进行了蒙特卡洛模拟,以设计一个新的模块化和可运输的中子系统,其主要目标是在被动模式下进行良好的表现,即中子重合计数,并在主动询问模式下与差分隔离技术。不同的设计,这些设计主要不同,它们的适量材料(石墨和聚乙烯)。这项参数研究使我们能够考虑到其在广泛的原地和核设施中的最终实施,从而定义了一个原型。原型的总中子检测效率为6.75%,如空鼓计算,即没有废物矩阵。基于核材料等效质量的检测极限,也基于对鼓内核材料的均匀分布的假设进行了估算,其中包含四种类型的矩阵,这些矩阵涵盖了项目框架中定义的核废料桶范围。最有利的矩阵是在被动模式下由不锈钢制成的,在活动模式下的聚乙烯,明显的密度分别为0.7 g.cm -3和0.1 g.cm -3。计算出的质量检测极限分别为240 PU的68毫克,62 mg的235 U和39 mg的239 PU。最严格的矩阵由聚乙烯制成,表观密度为0.7 g.cm -3,在被动模式下导致519 mg的质量检测极限为240 PU,564 mg的235 U或349 mg或349 mg的239 PU在活动模式下为239 PU。被动和主动模式的测量时间为30分钟。下一步将是基于密集的蒙特卡洛计算和实验设计的矩阵效应的完整研究,以找出适当的校正。还将在CADARACHE核测量实验室进行实验,并通过中子系统原型的构造和组装,以及装有不同矩阵的模拟鼓的测量。
摘要 - 在此简介中,我们提出了一种逐步策略,以准确估计基于硅的多纤维双极晶体管结构中的纤维温度,从常规的调查中。首先,我们在给定的环境温度下提取几乎零动力的自加热电阻(r TH,II(t a))和热耦合因子(C IJ(t a))。现在,通过将叠加原理应用于几乎零功率的这些变量上,其中保留了热扩散方程的线性,我们估计有效的热电阻(r th,i(t a))和相应的修订后的效率温度t i(t a)。最后,Kirchhoff在T I(t a)上的trans形得出每个纤维处的真实温度(t i(t a,p d))。所提出的提取技术自动包括晶体管结构中存在的后端金属层和不同类型的沟渠的影响。该技术是针对具有不同发射极尺寸的双极晶体管的3D TCAD模拟结果验证的,然后应用于从stmicroelectronics B5T技术中从最先进的多纤维sige HBT获得的实际测量数据。可以观察到,原始测量数据在40 mW左右的叠加量低估了真正的纤维温度约10%。
摘要:对贸易成本的适当度量和汇总对于经济成果的决定因素(尤其是政策)的合理学术和政策分析至关重要。国际贸易行业在理论和经验方面都见证了新的发展,涉及将这种成本的测量和分解成可变成本,一方面是部分和固定的成本,并涉及部分和一般的均衡效应。The objectives and main contributions of this project are to offer guidance for proper measurement, aggregation, and decomposition of trade costs into fixed vs. variable and partial vs. general equilibrium costs across two broad dimensions, one including overall trade costs vs. policy measures vs. transportation costs vs. natural trade barriers vs. uncertainty and another one including geography vs. product vs. household income level vs. agent.
在广义测量理论的背景下,格里森 - 布希定理确保了相关概率函数的独特形式。最近,在Flatt等人中。物理。修订版a 96,062125(2017),随后的测量值已被衍生而来的案例及其概括(克劳斯更新规则)。在这里,我们调查了随后测量的特殊情况,其中中间测量是两个测量值(A或B)的组成以及未定义因果秩序的情况(A和B或B和A)。在两种情况下都可能出现干扰效应。我们表明,关联的概率不能单一写,并且其参数上的分布属性不能被视为理所当然。两个概率表达式对应于出生规则和经典概率;它们与获得中间测量的定义结果的内在可能性有关。对于有限的因果秩序,还推导了因果不平等。在使用玩具模型的框架内研究了两种情况之间的边界,该框架是带有可移动束分配器的马赫 - 齐汉德干涉仪。
摘要:纳米颗粒形成的合成方法产生了异质种群的纳米颗粒,在研究反应性时,可以研究单纳米颗粒的化学植物学特性的技术。虽然单一实体电化学实验已被充分记录在包括球形金属纳米颗粒,乳液液滴和细胞在内的对称对象的,但由于碰撞过程中物体方向的自由度增强,因此不对称物体为额外的挑战提供了额外的挑战。最近,由于高电荷密度能力,机械稳定性和生物相容性的结合,石墨烯已成为一种突出的电极材料,其应用范围从体内感应到工业能量转换反应。石墨烯纳米片(GNP)是一种准二维导电纳米材料,其在微米尺度上具有两个尺寸,而在纳米尺度上有一个,在功能上充当平面材料。在与铁甲醇(外球氧化还原介体)存在下与电极表面碰撞后,观察到广泛的电流响应,这些反应被观察到对称对象的广泛电流响应。在这里,我们介绍了相关的电化学和光学显微镜,以同时在单个实体级别探测化学和空间信息,以完全了解石墨烯纳米片的纳米级的碰撞动力学。此外,这种相关的技术允许对复杂电流响应的反卷积,从而揭示了数十秒范围内耦合的瞬态事件。从这些测量值中,稳态电流的变化用于氧化亚甲醇的氧化可能与GNP碰撞时电极表面积的变化直接相关,从而深入了解了单一实体的几何形状|没有两种组合技术的电极界面,否则将无法访问。
e.karana@tudelft.nl摘要将微生物整合到人工制品中是HCI设计师感兴趣的越来越多的领域。但是,了解复杂的微生物行为所需的时间,资源和知识限制了设计师创造性地探索生命文物中的时间表达,即生活美学。桥接生物设计和计算机图形,我们开发了FlavoMetrics,这是一种交互式数字工具,该工具支持生物签名者探索黄霉菌的生活美学。此开源工具使设计人员能够实际上接种细菌并操纵刺激,以在数字环境中调节黄素的生命色。六名生物设计师评估了该工具,并反映了其对实践的影响,例如(1)了解2D以上的微生物的时空品质,(2)生物设计教育,以及(3)生命工厂的原型化经验。使用类黄素测量法,我们希望激发新颖的HCI工具,用于可访问,时间和资源效率的生物设计,以及更好地与不同的微生物时间范围内与生存人工制品生活中的差异。
摘要 - 为了确保在设计阶段的早期系统的可靠性,使模型能够预测暴露于静电排放(ESD)的系统的行为变得至关重要。这是越来越多的必要性,因为嵌入式电子产品的数量正在增长,并且由于它们被用于人们安全的应用,例如汽车和航空应用。到目前为止,准静态保护设备的准静态模型成功地在失败预测(主要是硬故障)中提供了相当好的结果。今天,此类设备的频率范围的增加需要动态模型能够重现其瞬态行为。在本文中,我们调查了通常在频域中使用的线性设备建模的常规方法,可用于获得ESD保护设备的等效频率模型,ESD保护设备表现出非线性行为。提出并详细介绍了从传输线脉冲(TLP)测量中提取ESD保护香料模型的方法,以解决瞬态和频率模拟。我们证明,在明确的条件下,此类频率模型可以提供准确的结果,以预测与保护设备触发延迟相关的过冲。对模型的验证是在三个现成设备上的TLP和人类金属模型(HMM)条件下进行的。
Yu-chung Lin 1,Katherine Keenan 2,Jiafen Gong 2,Naim Panjwani 2,Julie Avolio 3,Fan Lin 2,Damien Adam 4.5,Paula Barrett 6,Paula Barrett 6,StéphanieBégin5,StéphanieBégin5,Yves Bertiaume 4,Lara Bilodeau 7,Lara Bilodeau 7,Lara Bilodeau 7,Lara Bilodeau 7,Mark Chandice Bjornson 8,Mark Chil burne Burine 10,Janna Brine 9 Raquel Conteji-Araneta 11, Guillaume Côté-Maurais 5, Andrea Dale 12, Christine Donnelly 6, Lori Fairservice 8, Katie Grif fi n 13, Natalie Henderson 14, Angela Hillaby 15, Daniel Hughes 6, Shaikh Iqbal 11, Jennifer iTEMAN 16, Mary Jackson 17 17 , Emma Karlsen 18, Lorna Kosteniuk 17,Lynda Lazosky 18,Winnie Leung 15,Valerie Levesque 19,ÉmilieMilili5,Dimas Mateos-Corral 6,Vanessa McMahon 10,Mays Merjaneh 5,Nancy Morrison 5,Nancy Morrison 12,Michael Parkins 19,Mighan cike 13,Jennifer Pike 13,Jennifer Pike 16,Mariy Jane S. S. S. S. s. s. s. s. s. s. s. s. s. s. s. s. s. s. quon sill sill sill sill sill sill sill sill sill s. 21, Nathalie Vadeboncoeur 7, Danny Veniott 22, Terry Viczko 10, Pearce Wilcox 18, Richard Van Wylick 14, Garry Cutting 23, Elizabeth Tullis 13, Felix Ratjen 3,24, Johanna M. Rommens 25, She Sun 26, Melinda Solomon 24, Anne L. Stephenson 13, Emmanuelle Brochiero 4.5, Scott Blackman 23, Harriet Corvol 27.28和Lisa J. Struug 1,2,26,29.30✉
b'b't量子Zeno效应以最简单的形式描述了量子系统的频率测量可以减慢其时间演变的现象,最终导致其停止完全改变。已广泛研究了封闭的量子系统[BN67,MS77,CHE72,FRI76,FP08,EI05,EI21]和开放量子系统[MS03,BZ18,BFN + 20,MW19,MW19,MW19,MAT04,GL \ XC2 \ XC2 \ XC2 \ XA8U16,BDS21,MRM MR MR MR MR MR MR MR MR MR MR MR MR MR MR MR M \ XC2 \ XA8O24]和现象的实验验证是在[IHBW90,FGMR01,SMB + 06,SHC + 14]中实现的。量子ZENO效应具有各种应用,例如在控制反应[FJP04,HRB + 06],量子误差校正[EARV04,PSRDL12]和状态准备[NTY03,NUY04,WYN08]中。在这里,我们考虑以下在量子动力学半群下进化的无限二维开放量子系统中的量子zeno效应的一般设置,该系统由e t l'