图。1。钢琴弹奏任务设置。(a)SR3T的顶视图渲染,显示水平运动DOF和相关电动机。(b)SR3T的侧视图渲染,显示垂直运动DOF和相关电动机。(c)第一度自由度(DOF)的SR3T控制界面的顶视图渲染;参与者使用其右脚通过脚在脚上的惯性测量单元(IMU)捕获SR3T的运动。(d)第二DOF的SR3T控制接口的侧视图渲染。(e)在球体上投射的人拇指终点的工作表面与(f)(f)在球体上投射的SR3T端点的工作表面进行比较 - 增强人类的工作表面范围(请参阅方法)。(g,h)无约束的飞行员实验的顶部和侧视图:一位经验丰富的钢琴演奏者在佩戴和使用SR3T时自由锻炼钢琴,在使用后的1小时内有效地弹奏11个指钢琴。(i)系统实验:使用右手的5个手指加上左手食指(LHIF)和(J)使用SR3T弹奏序列。(k)参与者使用SR3T扮演在其前面显示器上显示的音符顺序。
首字母缩略词 .cvs Excel codex ⁰ 度 < 小于 % 百分比 ABC Artemis 大本营 ACES 学院颜色编码系统 ANOVA 方差分析 CEL 概念探索实验室 cm 厘米 conops 作战概念 deg 度 DEM 数字环境模型 DOUG 动态机载无处不在的图形 DRATS 沙漠研究和技术研究 DSN 深空网络 DTE 直接对地 EDGE 探索图形 EHP 美国宇航局的舱外活动和人类地面机动计划 ESDMD 探索系统发展任务理事会 EVA 舱外活动 F ANOVA F 值 FOD 异物碎片 FOV 视场 fps 每秒帧数 GUNNS 通用节点网络求解器软件 HAB 栖息地 HDR 高数据速率 HITL 人在回路 hh:mm:ss 小时、分钟、秒 IES 照明工程学会 IMU 惯性测量单元 ISRU 现场资源利用单元 JEOD 约翰逊航天中心工程轨道动力学集团 JSC 约翰逊航天中心 kg 千克 km 公里 kph 公里每小时 千瓦 千瓦时 千瓦每小时 激光雷达 光增强探测与测距
摘要 - 监控运动员运动对于提高性能,减轻疲劳并减少受伤的可能性很重要。高级技术,包括计算机视觉和惯性传感器,在对运动特定运动进行分类方面已广泛探索。将自动体育行动标签与运动员监控数据相结合提供了一种有效的方法来增强工作量分析。关于对运动特定运动进行分类的最新研究表明,基于个别运动员的训练和评估方法的趋势,使模型可以捕获每个运动员特有的独特功能。这对于运动员之间技术差异很大的运动特别有益。当前的研究使用受监督的机器学习模型,包括神经网络和支持向量机(SVM),以使用从上下背包惯性测量单元(IMU)传感器中提取的功能来区分跑步表面,即田径轨道,硬砂和软砂。主成分分析(PCA)用于特征选择和降低维度,增强模型效率和解释性。我们的结果表明,与运动员无关的方法相比,运动员依赖的训练方法可大大提高分类性能,从而达到更高的加权平均精度,召回,F1得分和准确性(p <0.05)。
摘要:缺乏直观和活跃的人类 - 动物相互作用使使用上肢辅助设备很难。在本文中,我们提出了一个基于学习的新型控制器,该控制器直觉地使用发作运动来预测辅助机器人所需的终点位置。实施了一个由惯性测量单元(IMU),肌电图(EMG)传感器和机械学(MMG)传感器组成的多模式传感系统。该系统用于在达到五个健康受试者执行的任务期间获取运动学和生理信号。提取了每个运动试验的开始运动数据,以输入传统的回归模型和训练和测试的深度学习模型。模型可以预测手在平面空间中的位置,这是低级位置控制器的参考位置。结果表明,使用IMU传感器与提出的预测模型具有足够的运动意图检测,与添加EMG或MMG相比,该模型可以提供几乎相同的预测性能。此外,基于复发的神经网络(RNN)模型可以在短发时间窗口中预测目标位置以进行动作,并且适合在更长的视野上预测目标的目标。这项研究的详细分析可以提高辅助/康复机器人的可用性。
Xsens 的 MTi 产品组合目前有 7 个系列产品,功能范围从惯性测量单元 (IMU) 到完全集成的 GPS/INS 解决方案。所有产品都包含 3D 惯性传感器组件(ISA:陀螺仪和加速度计)和 3D 磁力计,并可选配气压计和 GNSS 接收器。MTi 产品系列分为两个系列,即 MTi 10 系列和 MTi 100 系列。MTi 10 系列是 Xsens 的入门级型号,具有强大的精度和有限的 IO 选项范围。100 系列是革命性的新型 MEMS IMU、方向和位置传感器模块,提供前所未有的精度和广泛的 IO 接口。所有 MTi 均采用强大的多处理器核心设计,能够以极低的延迟处理滚动、俯仰和偏航,以及输出经过校准的 3D 线性加速度、转速(陀螺仪)、(地球)磁场和大气压力(仅限 100 系列)数据。MTi-G-700 GPS/INS 还提供 3D 位置和 3D 速度。MTi 接口可直接提供 50 多种不同的输出格式。每种产品的各种输出可在第 4.1 节中找到。本文档介绍了所有 7 种 MTi 的使用、基本通信接口和规格。它们之间的差异已明确标明。从机械和软件接口的角度来看,所有产品都设计为可互换。
Xsens 的 MTi 产品组合目前有 7 个系列成员,功能范围从惯性测量单元 (IMU) 到完全集成的 GPS/INS 解决方案。所有产品都包含 3D 惯性传感器组件(ISA:陀螺仪和加速度计)和 3D 磁力计,可选配气压计和 GNSS 接收器。MTi 产品系列分为两个系列,即 MTi 10 系列和 MTi 100 系列。MTi 10 系列是 Xsens 的入门级型号,具有强大的精度和有限的 IO 选项范围。100 系列是革命性的新型 MEMS IMU、方向和位置传感器模块,提供前所未有的精度和广泛的 IO 接口。所有 MTi 都具有强大的多处理器核心设计,能够以极低的延迟处理滚动、俯仰和偏航,以及输出校准的 3D 线性加速度、转速(陀螺仪)、(地球)磁场和大气压力(仅限 100 系列)数据。MTi-G-700 GPS/INS 还提供 3D 位置和 3D 速度。MTi 接口可直接提供 50 多种不同的输出格式。每种产品的各种输出可在第 4.1 节中找到。本文档描述了所有 7 个 MTi 的使用、基本通信接口和规格。它们的不同之处已明确指出。从机械和软件接口的角度来看,所有产品都设计为可互换。
摘要 - 在Mavlink协议上使用Python脚本,开发人员可以使用开源Dronekit Python软件框架来启用自动无人机操作。此框架提供了出色的灵活性和功能,可促进自动无人机控制。构建的四轮驱动器具有X配置,并使用带有一些修改的DJI F450帧。有趣的是,无人机在两侧都有铝制的腿,以帮助进行平稳起飞和着陆。框架为45厘米,对角线长度和30厘米的垂直高度。在15 x 18 x 12.5厘米的盒子中给出了额外的重量。本研究中使用的螺旋桨是一个基于9x6的碳模型。使用的X2216 1400KV无刷电动机来自Sunnysky,它带有30A等级的电子速度控制器(ESC)。4细胞14.8V锂聚合物(LI-PO)电池具有7200mAh容量为无人机供电。除此之外,无人机总共重1573克。结果是通过自我测量和飞行测量数据(FMU)获得的。进行了六次尝试,结果表明第二次飞行时间最长,高度最高。特别是,飞行测量单元(FMU)报告说,飞行持续了81秒,达到0.93米的高度。相反,自我测量数据报告说,飞行持续了85秒,高度达到1.5米。
摘要 - 虽然只有有限数量的程序在机器人指导手术期间可用图像指导,但他们仍然要求外科医生手动将所获得的扫描引用到其在组织表面上的预计位置。虽然外科医生可以通过电外科标记器官表面上的边界,但肿瘤周围的精确边缘可能会保持可变,并且在病理分析之前不能保证。本文提出了第一次尝试自主提取和标记肿瘤边界,并在组织表面上指定边缘。它提出了通过惯性测量单元(IMU)传感器融合进行刀具 - 组织相互作用控制的第一个概念,并从电信单元(ESU)的电信号中进行接触检测,不需要力感应。我们使用解剖表面几何形状开发并评估了对超声(US)幻象的方法,比较将肿瘤投射到表面上的不同策略,并评估其在重复试验中的准确性。最后,我们证明了将方法转化为前猪肝的可行性。我们能够达到高于0的真正正率。84和低于0的错误检测率。12与虚拟和前体实验的标记轨迹的每个计算和执行的跟踪参考相比。
摘要 本项目提出并描述了由传感器/拦截器放置规划和拦截无人机 (UAV) 直升机组成的广域监视系统的实施。给定一个区域的二维布局,规划系统基于最大覆盖范围和最小成本最佳地放置周界摄像机。该规划系统的一部分包括 Erdem 和 Sclaroff 的径向扫描算法的 MATLAB 实现,用于生成可见性多边形。此外,还针对固定和 PTZ 情况提出了二维摄像机建模。最后,还放置了拦截器以最小化检测事件期间到周界上任何一点的最短路径飞行时间。其次,设计和实施了无人机直升机的基本飞行控制系统。飞行控制系统的主要目标是当操作员握住自动飞行开关时,将直升机悬停在原地。该系统代表了完整航路点导航飞行控制系统的第一步。飞行控制系统基于惯性测量单元 (IMU) 和比例积分微分 (PID) 控制器。该系统使用运行 Windows XP 和其他商用现货 (COTS) 硬件的通用个人计算机 (GPPC) 实现。此设置不同于通常使用定制嵌入式解决方案或微控制器的其他直升机控制系统。实验表明,在给定多种摄像机类型和参数的情况下,传感器放置规划可以在优化成本下针对几个典型区域实现 >90% 的覆盖率。此外,直升机飞行控制系统实验在短飞行时间内实现了悬停成功。但最终结论是,COTS IMU 不足以满足直升机控制系统等高速、高频应用的需求。
摘要 - 光检测和范围(LIDAR)已被广泛用于空中监视和自动驾驶。如果配备LIDAR,机器人技术甚至微型机器人的能力都可以大大增强,但是必须使用非常轻巧和小的LIDAR。微型机器人的尺寸接近鸟类或昆虫,几乎所有现有的激光雷达都太重了,对它们来说太大了。在这项工作中,提出并证明了其光学扫描仪的新型MEMS LIDAR,其光学扫描仪已被提出并证明。扫描仪头将通过移动的微型机器人携带,而雷达底座则固定在地面上。有一条薄而柔性的光学/电缆,将扫描仪头连接到底座。扫描仪头由一个MEMS镜子和一个棒镜组成,它的重量仅为10 g,长4厘米。mems镜的光圈为1.2 mm×1.4 mm,可以扫描9°×8°的视场(FOV)。由于微型机器人和光学扫描仪头部相对于光学接收器的移动,IMU(惯性测量单元)已嵌入扫描仪头中以跟踪运动,并且已经开发出算法以重建真实点云。可移动的底圈可以每秒获取400点,并检测到最多35厘米的目标。微型机器人在移动时可以携带扫描仪的头部,并且可以在LiDAR底座生成点云。这种新的LIDAR配置可实现微型机器人的范围,映射,跟踪和缩放扫描。