Michael Bevis Chris Jekeli CK Shum 俄亥俄州杰出学者和大地测量学教授 大地测量学名誉教授 大地测量学教授 俄亥俄州立大学 俄亥俄州立大学 俄亥俄州立大学 Dave Zilkoski Richard Salman William Carter 美国国家地理空间研究所前所长 美国国家大地测量局前局长 美国国家大地测量局测绘办公室前研究主管 James Davis Thomas Herring Craig Glennie Lamont 研究教授 大地测量学教授 大地测量工程教授 哥伦比亚大学纽约市分校 麻省理工学院 休斯顿大学 David Sandwell Stephen Hilla 加州大学圣地亚哥分校 Yehuda Bock 大地测量学教授 美国国家大地测量局杰出研究大地测量学家和美国国家科学院前研究主管 Ken Hudnut Jeff Freymueller John Factor 大地测量学教授前地球物理学家 美国地质调查局前大地测量学家 密歇根州立大学 NGA 测绘办公室
超过 2100 篇参考文献的汇编提供了一站式访问地貌测量学(地表形态的量化)的各种文献的渠道。该报告还定义了该学科,描述了其范围和实践,讨论了目标和应用,并确定了相关领域。参考书目记录了当前计算机驱动的地貌测量学的最新进展,并提供了理解其发展的历史背景。大多数条目至少涉及该科学的十个方面中的一个,即其概念框架、使能技术、地形数据及其空间排序、垂直和水平域中的地形属性、地形的尺度依赖性和自组织、描述参数的冗余、地形分类以及地表过程的解释。大约 350 篇参考文献的子集分为 49 个主题,更详细地概述了地貌测量学领域,引导读者进入更长的未注释列表。最后,超过 100 篇参考文献追溯了该学科的一项杰出新贡献的开发和应用:DEM 到流域的转换。
摘要 我们回顾了光学原子钟和频率传输的实验进展,并考虑了将这些技术用于大地测量的前景。今天,光学原子频率标准已经达到了 10 − 17 以下的相对频率误差,开辟了基础研究和应用研究的新领域。原子频率对引力势的依赖性使原子钟成为寻找爱因斯坦广义相对论预测偏差、测试现代统一理论和开发新型重力场传感器的理想候选者。在本综述中,我们介绍了光学原子钟的概念,并介绍了国际时钟开发和比较的现状。除了进一步提高当今最佳时钟的稳定性和准确性之外,我们还投入了大量精力来提高紧凑、便携设备的可靠性和技术准备度,以适应专业实验室以外的应用。相对频率不确定度为 10 − 18 ,预计光学频率标准的比较将与卫星和地面数据一起,以厘米级分辨率精确确定大地测量学中的基本高度参考系统。原子标准的长期稳定性将为大地测量以及对地球的建模和理解提供出色的长期高度参考。
卫星大地测量法在测地学、测量工程和相关学科中得到越来越广泛的应用。特别是,现代精确和实用的卫星定位和导航技术的发展已经进入了地球科学和工程的所有领域。新的和即将发射的卫星任务以及对地球在太空中自转的监测对精细结构重力场模型的需求也日益增长。多年来,我一直觉得确实需要一本涵盖整个主题的系统教科书,包括其基础和应用。我希望这本书至少能在一定程度上满足这一要求。这里介绍的材料部分基于汉诺威大学自 1973 年以来教授的课程和国外客座讲座。我希望这些材料可以用于其他大学的类似课程。本书主要针对大地测量学、测量工程、摄影测量、制图学和测绘学等专业的高年级本科生和研究生。本书还旨在为对卫星大地测量方法和结果感兴趣并需要了解最新发展的专业人士提供信息来源。此外,本书还面向工程和地球科学相关领域的学生、教师、专业人士和科学家,例如陆地和空间导航、h
卫星大地测量法在测地学、测量工程和相关学科中得到越来越广泛的应用。特别是,现代精确和实用的卫星定位和导航技术的发展已经进入了地球科学和工程的所有领域。新的和即将发射的卫星任务以及对地球在太空中自转的监测对精细结构重力场模型的需求也日益增长。多年来,我一直觉得确实需要一本涵盖整个主题的系统教科书,包括其基础和应用。我希望这本书至少能在一定程度上满足这一要求。这里介绍的材料部分基于汉诺威大学自 1973 年以来教授的课程和国外客座讲座。我希望这些材料可以用于其他大学的类似课程。本书主要面向大地测量学、测量工程、摄影测量、制图学和测绘信息学领域的高年级本科生和研究生。本书还旨在为对卫星大地测量方法和结果感兴趣并需要了解最新发展的专业人士提供信息来源。此外,本书还面向工程和地球科学相关领域的学生、教师、专业人士和科学家,如陆地和空间导航、水文学、土木工程、交通管制、GIS 技术、地理、地质、地球物理学和海洋学。为了实现这一目标,本书的性质介于教科书和手册之间。所需背景是本科数学和初等数理统计水平。由于该领域的快速和持续发展,有必要进行选择,并给予某些主题比其他主题更大的权重。本书特别重视基础知识和应用,尤其是使用人造卫星确定精确位置。本书还添加了全面的参考文献列表,以便进一步阅读,从而促进更深入和更高级的研究。本书第一版于 1993 年出版,是 1989 年以德文出版的《Satellitengeodäsie》一书的英文翻译和更新版。目前的版本经过了彻底的修订和显著的扩充。本书保留了第一版的基本结构,以促进教学的连续性;但是,删除了过时的材料并添加了新材料。所有章节都已更新,有些章节已重写。总体状态为 2002 年秋季,但已包含截至 2003 年 3 月的一些最新技术发展。扩展和更新主要涉及参考坐标系和参考框架[2.2]、信号传播[2.3]、CCD 技术的方向[5.2]、全球定位系统 (GPS) 和 GNSS [7]、卫星激光测距[8]、卫星
因此,大地测量工作的准确性问题至关重要,它决定了建筑物和结构的质量和可靠性。在评估测量的可靠性和正确性时,最重要的是根据项目的既定技术要求,选择适合大地测量工作仪器的完美方法。由于科技进步,随着建筑技术水平的提高,工程大地测量工作的方法和设备的生产也得到了改进。如果直到20世纪60年代大地测量仪器的发展还走的是传统技术改进的道路,那么最近30-40年代微电子技术的发展则开启了大地测量工作工具和方法的新时代。
Error 500 (Server Error)!!1500.That’s an error.There was an error. Please try again later.That’s all we know.
在过去三年中,全球锁定,地缘政治紧张局势不断升级和原材料的高需求导致电子芯片短缺。这种短缺影响了家用电器,汽车,计算设施和整个技术领域的生产,对移动网络,可再生能源生产,医疗保健和数字化产生了负面影响。以前的现代社会从未经历过这样的短缺,因此自主芯片生产,而使它最重要的技术是光刻的光刻和光学维度计量学,对世界上最大的经济体来说已经在战略上变得重要。自2000年以来,欧洲的半导体制造业已从全球生产能力的24%下降到8%。此外,它目前主要集中在成熟的微芯片技术上,仅在高级芯片技术上只有很小的一部分。
摘要。地貌测量学是一门定量描述地形特征的科学,传统上侧重于陆地景观的研究。然而,数字测深数据的可用性急剧增加,以及使用地理信息系统 (GIS) 和空间分析软件进行地貌测量研究的日益便捷,引起了人们对使用地貌测量技术研究海洋环境的兴趣。在过去十年左右的时间里,已经应用了大量地貌测量技术(例如地形属性、特征提取、自动分类)来表征从沿海地区到深海的海底地形。然而,地貌测量技术在海洋中的应用并不像在陆地环境中那样多样化,也不像在陆地环境中那样广泛。这至少部分是由于捕捉、分类和验证水下地形特征的困难。然而,陆地和海洋地貌测量应用之间有很多共同点,重要的是,在开发海洋地貌测量时,我们要从陆地研究的经验中学习。然而,并非所有陆地解决方案都可以被海洋地貌测量研究采用,因为海洋环境的动态、四维 (4-D) 特性在整个地貌测量工作流程中都会引起自身的问题。例如,水下定位问题、变量