摘要。地貌测量学是一门定量描述地形特征的科学,传统上侧重于陆地景观的研究。然而,数字测深数据的可用性急剧增加,以及使用地理信息系统 (GIS) 和空间分析软件进行地貌测量研究的日益便捷,引起了人们对使用地貌测量技术研究海洋环境的兴趣。在过去十年左右的时间里,已经应用了大量地貌测量技术(例如地形属性、特征提取、自动分类)来表征从沿海地区到深海的海底地形。然而,地貌测量技术在海洋中的应用并不像在陆地环境中那样多样化,也不像在陆地环境中那样广泛。这至少部分是由于捕捉、分类和验证水下地形特征的困难。然而,陆地和海洋地貌测量应用之间有很多共同点,重要的是,在开发海洋地貌测量时,我们要从陆地研究的经验中学习。然而,并非所有陆地解决方案都可以被海洋地貌测量研究采用,因为海洋环境的动态、四维 (4-D) 特性在整个地貌测量工作流程中都会引起自身的问题。例如,水下定位问题、变量
超过 2100 篇参考文献的汇编提供了一站式访问地貌测量学(地表形态的量化)的各种文献的渠道。该报告还定义了该学科,描述了其范围和实践,讨论了目标和应用,并确定了相关领域。参考书目记录了当前计算机驱动的地貌测量学的最新进展,并提供了理解其发展的历史背景。大多数条目至少涉及该科学的十个方面中的一个,即其概念框架、使能技术、地形数据及其空间排序、垂直和水平域中的地形属性、地形的尺度依赖性和自组织、描述参数的冗余、地形分类以及地表过程的解释。大约 350 篇参考文献的子集分为 49 个主题,更详细地概述了地貌测量学领域,引导读者进入更长的未注释列表。最后,超过 100 篇参考文献追溯了该学科的一项杰出新贡献的开发和应用:DEM 到流域的转换。
卫星大地测量法在测地学、测量工程和相关学科中得到越来越广泛的应用。特别是,现代精确和实用的卫星定位和导航技术的发展已经进入了地球科学和工程的所有领域。新的和即将发射的卫星任务以及对地球在太空中自转的监测对精细结构重力场模型的需求也日益增长。多年来,我一直觉得确实需要一本涵盖整个主题的系统教科书,包括其基础和应用。我希望这本书至少能在一定程度上满足这一要求。这里介绍的材料部分基于汉诺威大学自 1973 年以来教授的课程和国外客座讲座。我希望这些材料可以用于其他大学的类似课程。本书主要面向大地测量学、测量工程、摄影测量、制图学和测绘信息学领域的高年级本科生和研究生。本书还旨在为对卫星大地测量方法和结果感兴趣并需要了解最新发展的专业人士提供信息来源。此外,本书还面向工程和地球科学相关领域的学生、教师、专业人士和科学家,如陆地和空间导航、水文学、土木工程、交通管制、GIS 技术、地理、地质、地球物理学和海洋学。为了实现这一目标,本书的性质介于教科书和手册之间。所需背景是本科数学和初等数理统计水平。由于该领域的快速和持续发展,有必要进行选择,并给予某些主题比其他主题更大的权重。本书特别重视基础知识和应用,尤其是使用人造卫星确定精确位置。本书还添加了全面的参考文献列表,以便进一步阅读,从而促进更深入和更高级的研究。本书第一版于 1993 年出版,是 1989 年以德文出版的《Satellitengeodäsie》一书的英文翻译和更新版。目前的版本经过了彻底的修订和显著的扩充。本书保留了第一版的基本结构,以促进教学的连续性;但是,删除了过时的材料并添加了新材料。所有章节都已更新,有些章节已重写。总体状态为 2002 年秋季,但已包含截至 2003 年 3 月的一些最新技术发展。扩展和更新主要涉及参考坐标系和参考框架[2.2]、信号传播[2.3]、CCD 技术的方向[5.2]、全球定位系统 (GPS) 和 GNSS [7]、卫星激光测距[8]、卫星
卫星大地测量法在测地学、测量工程和相关学科中得到越来越广泛的应用。特别是,现代精确和实用的卫星定位和导航技术的发展已经进入了地球科学和工程的所有领域。新的和即将发射的卫星任务以及对地球在太空中自转的监测对精细结构重力场模型的需求也日益增长。多年来,我一直觉得确实需要一本涵盖整个主题的系统教科书,包括其基础和应用。我希望这本书至少能在一定程度上满足这一要求。这里介绍的材料部分基于汉诺威大学自 1973 年以来教授的课程和国外客座讲座。我希望这些材料可以用于其他大学的类似课程。本书主要针对大地测量学、测量工程、摄影测量、制图学和测绘学等专业的高年级本科生和研究生。本书还旨在为对卫星大地测量方法和结果感兴趣并需要了解最新发展的专业人士提供信息来源。此外,本书还面向工程和地球科学相关领域的学生、教师、专业人士和科学家,例如陆地和空间导航、h
成人的传统人体测量主要局限于用人体测量仪、卷尺和卡尺进行的测量。尺寸是线性的,它们与身体表面有关——身体标志的高度、宽度、周长和表面点之间的跨度。为了可重复,必须以相同的方式对不同的人进行测量,并且受试者在测量期间必须采取刻板的静态姿势,通常是站立。也可以使用补充的和同样刻板的姿势,例如坐姿、仰卧、双臂伸展等。当然,这些测量允许在个体之间和人群之间进行比较。它们提供有关个体相对大小和变异性的信息,但它们绝不是功能性测量。如果要开发一种能够应对运动和姿势变化问题的动态人体测量学,就必须寻求新的方法,并且必须扩展测量参数以包括角度、速度、加速度、节奏模式、空间范围和力量。身体活动是无限可变的,必须有一个理论框架,以便正确评估相关特征和次要特征。同样,重要的是,他也要了解身体机制的条件因素和内在局限性。简化和抽象概念是必要的,但重要的是,这些概念不应相对于手头的具体问题过度简化。基于动态测量的研究应有助于人类的舒适性、效率、便利性和安全性。人们可以设想将工作空间信息应用于工业工人、教室、车辆和机械以及军事问题。应该对家具设计和厨房和浴室等工作空间的建筑有所贡献。此外,更好地了解身体机制的动态作用应该有助于指导运动表现、设计工作服(包括鞋子和手套)、人员选拔和设计假肢。Braune 和 Fischer6 是该领域的先驱,Lay 和 Fisher6 做了较新的工作:Hooton、2l Randall 等、Chapanis 等、B Smith 及其团队、% McFarland 等、% 和 Dempster.1'
斯蒂芬英年早逝,年仅 47 岁,他的许多朋友、同事、学生、法庭同事和音乐家都将永远怀念他。仅凭这一点,就足以证明他拥有无可置疑的智慧、创造力和沟通能力,而他的热情和精力在众多领域也堪称一流。斯蒂芬在伊斯灵顿长大,1968 年进入剑桥大学冈维尔与凯斯学院攻读医学科学。他的同时代人也许会最记得他对自由爵士乐的热爱,以及他连续几年将音乐节目《Stony Ground》和《Make Me, Make You》带到爱丁堡艺穗节所发挥的作用。他早期在国家青年爵士乐团的经历,以及他心目中的偶像查理·帕克的启发,无疑影响了他组建史蒂夫·菲桑特五重奏组,该组从 20 世纪 70 年代中期到 80 年代初一直在德鲁里巷的白鹿旅馆演出。史蒂夫的密友兼乐队成员伊恩·卡梅隆回忆道,史蒂夫的多才多艺和萨克斯风的波普创意、他偶尔演唱的“让美好时光滚滚而来”以及乐队的“静坐”风格,都反映了史蒂夫的热情和参与精神。这些,加上他强烈的奉献精神,在他的职业生涯中得到了立即的认可。史蒂夫在皇家自由医院和大学学院讲授解剖学、生物力学和人体工程学多年,他的学生们很少能遇到比他更出色的沟通者。
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版
地形建模是一种对地表进行量化的实践,是地球科学、数学、工程学和计算机科学的综合体。该学科有各种名称,如地貌测量学(或简称为形态测量学)、地形分析和定量地貌学。它通过水文学、地质灾害测绘、地质构造学、海底和行星探索以及其他领域的大量应用不断发展壮大。该领域名义上可以追溯到学术地理学的共同创始人亚历山大·冯·洪堡(1808 年,1817 年)和卡尔·里特(1826 年,1828 年),20 世纪后期,计算机操纵地形高度的空间阵列或数字高程模型 (DEM) 彻底改变了该领域,这些模型可以量化和描绘大面积的地表形态(Maune,2001 年)。形态测量程序通常由商业地理信息系统 (GIS) 以及专业软件实施(Harvey 和 Eash,1996 年;Köthe 等人,1996 年;ESRI,1997 年;Drzewiecki 等人,1999 年;Dikau 和 Saurer,1999 年;Djokic 和 Maidment,2000 年;Wilson 和 Gallant,2000 年;Breuer,2001 年;Guth,2001 年;Eastman,2002 年)。《地球物理杂志》的新地球表面版