目的 本研究旨在定性评估和比较塔马利教学医院产科接受剖宫产插管全身麻醉的患者中涉及套囊充气的一些技术及其相应的压力估计以及相关并发症。结果 插管后,使用手指触诊测压球囊、预定量的空气和压力计测量气管插管套囊压力。拔除气管插管 24 小时后确定相关副作用。分析包括 384 名患者的数据。患者测量的袖带压力在标准压力计组为 < 20 -30 cmH 2 O,预定量空气组为 20 至 50 cmH 2 O,手指触诊组为 < 20 至 < 50 cmH 2 O。2.3% 的患者记录到副作用
根据 2024 年 8 月 15 日的 NRC 表格 314“材料处置证书”(ML 24331A007),许可证编号 41-23915-01E 特此终止。
• TRUTHS 卫星将被发射到高度约为 610 公里的极地非太阳同步轨道。TRUTHS 将测量整个地球:陆地、海洋、冰川和大气层,每 61 天至少访问一次地球上的每个区域。• TRUTHS 将拥有两种主要仪器:• 高光谱成像光谱仪 (HIS) 将连续测量从紫外线到红外线(320-2400 纳米)所有波长范围内的窄光谱带辐射,地球上的空间分辨率为 50 米;• 低温太阳绝对辐射计 (CSAR) 将测量入射太阳能并作为机载“黄金标准”。• TRUTHS 还将拥有一个机载校准系统 (OBCS),该系统将使用单色仪将阳光分解成不同的波长,以提供从 CSAR 到 HIS 的校准链路——该过程和参考标准模仿了泰丁顿 NPL 实验室在地面上使用的流程和参考标准。
摘要:大坝的维护,包括水库和防洪堤的保护,需要定期进行控制测量和对其技术状况进行评估。测量方法的选择,特别是在速度和可靠性方面,变得至关重要,尤其是在设施因自然灾害而受到威胁时。然而,尽管现代大地测量技术发展迅速,但大多数大坝的测量仍然使用传统技术进行,例如需要干扰被测结构的角度线性或水准测量。此外,它们需要由员工亲自执行或需要对结构或其保护区进行目视检查。本文介绍了非接触式大地测量技术,例如地面激光扫描、强度遥感分类和使用各种测量传感器记录的热成像图像、数字图像相关、数字摄影测量或无人机。从可靠性、效率和所获数据的准确性以及自动化和集成的可能性等方面对它们进行了介绍和比较。随着测量员、水利和岩土工程师越来越多地转向现代测量技术,本文的目的是帮助选择合适且有效的监测工具,确保快速安全的测量,这对于混凝土结构的安全和维护至关重要。它介绍了华沙理工大学大地测量与制图学院的员工近年来使用现代测量技术进行的研究实例。
Donnie Smith辐射安全官员高级测量技术,Inc。801 South Illinois Avenue Oak Ridge,TN 37830主题:高级测量技术,Incorporated Sufferated Prienders Pristraient wildention dear Smith先生:美国核监管委员会(NRC)收到了终止终止分配发行许可证号41-23915-01E,日期为2024年8月15日。请找到封闭的修正案3终止许可证。该终止是根据适用的NRC许可终止规则的要求(10 CFR)第30.36节的要求。请仔细检查封闭的文件,并确保您了解所有条件。如果有任何错误或问题,请与我联系,以便可以提供适当的更正或答案。按照10 CFR 2.390的“实践和程序规则”的规定,该信和您的许可证的副本将以电子方式在NRC的公共文档室或NRC的公共可用记录组件中以公共检查提供,或者可以在NRC的Agency Winder Wighate Pocorment ofident Documents访问和管理系统(ADAMS)中获得。Adams可以从NRC网站http://www.nrc.gov/nrc/adams/index.html访问。如果您有疑问,请通过(301)415-3257与我联系,或通过电子邮件,电话:michelle.hammond@nrc.gov。
双曲线无线电定位:该概念是在第二次世界大战期间发展起来的,其基础是测量已知位置的(主从)发射器对广播的信号的相位或到达时间的差异。由差异产生的定位线 (LOP) 是双曲线。两条双曲线(来自两对发射器)的交点决定了导航员的位置。双曲线无线电定位系统的精度在空间上是可变的,取决于三个因素:LOP 测量不确定性、双曲线 LOP 的扇出(扩展因子)(取决于主从之间与基线的距离)以及 LOP 之间的相交角(见图 1)。表 1 总结了用于收集 GEBCO 数据的双曲线系统的特征。
态势感知 (SA) 已经取代传统的“方向舵和操纵杆”技能,成为空战中取胜的主要因素 (Endsley,1995;Svenmarckt 和 Dekker,2003)。态势感知通常被定义为一个人对当前状况的感知 (SA 级别 1)、对当前状况的理解 (SA 级别 2) 和对近期事件的预测 (SA 级别 3) 的三级结构 (Endsley,1995)。态势感知作为一个概念可能是有争议的。例如,Dekker 和 Hollnagel (2004) 将该概念描述为“民间模型”,并采用还原论方法,认为态势感知可以分解为可测量的具体组成部分 (例如决策、感知、理解和长期记忆)。他们还认为,态势感知不容易被证伪 (另见 Flach,1995)。即使承认 SA 确实存在,该概念的科学性仍有待商榷。例如,它存在于用户的认知中,还是更广泛系统的突发属性,以及最合适的测量方法是什么(有关更多详细信息,请参阅 Salmon 等人,2008 年;Endsley,2015 年;Stanton 等人,2017 年;Nguyen 等人,2019 年的广泛评论)?尽管如此,很明显,SA 的概念已成为评估系统和人类表现的重要指标。正如 Wickens (2008) 指出的那样“……人们可以说,该构造在理论和应用中的使用增加证明了
摘要该文章介绍了时间域反射法(TDR)技术的应用,以测量建筑中使用的多孔建筑材料的水分。这项工作的重点是利用人工智能性别的潜力来通过新的方法来解释从TDR读取获得的数据来提高TDR测量的质量。机器学习是一种数据分析技术,如今在许多科学的语言上使用。作者使用人工智能算法进行了测量数据分析,以评估使用两个非侵入性传感器测试的充气混凝土样品的水分,该水分在厚度上有所不同。使用监督的机器学习进行了数据分析,以分析测量过程中获得的一系列反射图。对于通过经典和机器学习方法解释获得的数据,进行了相关分析,以确认人工智能的潜力提高TDR测量的质量。该工作的摘要讨论了获得的分析结果,并使用高斯工艺回归方法强调了水分评估的有效评估,该方法允许达到RMSE错误值的0.2-0.3%的水平,该水平比传统方法低约10倍。
摘要该文章介绍了时间域反射法(TDR)技术的应用,以测量建筑中使用的多孔建筑材料的水分。这项工作的重点是利用人工智能性别的潜力来通过新的方法来解释从TDR读取获得的数据来提高TDR测量的质量。机器学习是一种数据分析技术,如今在许多科学的语言上使用。作者使用人工智能算法进行了测量数据分析,以评估使用两个非侵入性传感器测试的充气混凝土样品的水分,该水分在厚度上有所不同。使用监督的机器学习进行了数据分析,以分析测量过程中获得的一系列反射图。对于通过经典和机器学习方法解释获得的数据,进行了相关分析,以确认人工智能的潜力提高TDR测量的质量。该工作的摘要讨论了获得的分析结果,并使用高斯工艺回归方法强调了水分评估的有效评估,该方法允许达到RMSE错误值的0.2-0.3%的水平,该水平比传统方法低约10倍。
由于新技术的出现,故障信号对测量技术的影响最近发生了重大变化。由于技术转向更多的电力驱动和氢技术,传感器也应该在这种环境下提供可重复和可靠的数据。为了继续确保测量结果的质量,必须重新考虑、修改和测试传感器和电缆概念。本演讲的目的是指出与采用压电 ICP ® 和 MEMS-DC 技术的振动和加速度传感器相关的这些问题,并展示改进和解决方案的示例。将介绍产品改进,并展示电动汽车领域测试系列的测量结果。将讨论最佳布线、电缆选择和接地概念的实用建议。讨论了使用安慰剂传感器验证测量结果的观点。这些发现和改进建议对电动汽车开发领域以及城市空中交通 (UAM) 的 eVTOL 的测试和测量工程师在选择传感器及其使用方面有很大帮助。