纠缠是量子技术的宝贵资源。在计量学中,纠缠探针比非纠缠探针能进行更精确的测量 [ 1 – 6 ]。除了使用纠缠探针来增强对单个参数的测量之外,利用纠缠来同时估计多个参数或这些参数的函数最近也引起了人们的兴趣,因为它在纳米级核磁共振成像等任务中具有潜在的应用价值 [ 7 – 15 ]。在本文中,我们致力于推广参考文献 [ 15 ] 的工作,该工作证明了与 d 个量子比特耦合的 d 个参数的线性组合的估计量的方差下限。我们将这种方法推广到测量 d 个参数的任意实值解析函数,并且我们表明纠缠可以将这种估计的方差降低 O(d) 倍。最后,我们提出了一种在长测量时间极限内渐近地实现最优方差的协议。此外,当参数耦合到 d 干涉仪或干涉仪和量子比特的组合时,我们提出了一种类似的海森堡缩放协议来改善测量噪声。然而,在这种情况下,我们缺乏最优性的证明。我们还可以使用参考文献 [ 16 ] 中提出的协议将参数耦合到通过同差测量检测到的连续变量。我们还将研究这种协议在场插值中的应用。假设 se
摘要我们通过将干涉率脉冲序列应用于捕获的离子光学量子位,以快速准确地将杂散的电场快速准确地陷入线性陷阱中。当陷阱刚度变化时,干涉序列对离子平衡位置的变化很敏感,我们使用它来确定流浪电场。最简单的脉冲序列是两个脉冲拉姆西序列,具有多个脉冲的较长序列具有更高的精度。这些方法允许将散落场的强度最小化,超过最新水平。使用九个脉冲序列,我们将2D杂音场的强度降低到(10。5±0。8)MV M -1在11 s的测量时间中。脉冲序列易于实现和自动化,并且它们可抵抗激光失调和脉冲区域误差。我们使用具有不同长度和精确度的干涉序列来测量不确定性低于标准量子极限的散落场。这标志着一种现实情况,其中量子计量学提供了显着的增强。另外,我们使用单个探针激光器将干涉法与分辨的侧带方法一起使用单个探针激光器最小化2D的微功能;这对于有限的光学访问实验很有用。此外,这项工作中提出的一种技术与用于同步时钟的量子协议有关;我们在这里演示这些协议。
IFM 接收器的工作原理 当前的 IFM 接收器技术对 RF 频率、RF 幅度和 RF SNR 进行采样;随后的数字处理提取峰值 RF 幅度、与峰值 RF 测量时间同步的 RF 输入频率、TOA 和 RF 包络脉冲宽度。测量结果通过每个时钟周期估算的最小可接受 RF SNR 进行限定。这使接收器能够自动调整以适应输入 SNR 的变化,而无需积分噪声附加阈值。IFM 接收器数字处理和串行 PDW 生成使其成为处理超外差接收器 IF 输出的理想设备。在许多 ELINT 系统中,采用两个 IFM 接收器和一个超外差接收器的并行组合。一个 IFM 接收器提供 2-18GHz 的瞬时单频带覆盖,而超外差接收器使用第二个 IFM 接收器进行 IF 处理,提供对选定信号的高灵敏度精确分析。这种组合同时提供了高截获概率 (HPI) 能力和详细分析能力。IFM 接收器最显著的操作优势也是其最大的缺点:虽然它准确地处理瞬时观察到的最大 RF 输入信号,但它忽略了同时存在的较小功率的 RF 输入。在 IFM 接收器的早期开发中,同时出现低于 20dB 的信号并不罕见
• Carcoustics International GmbH 是汽车行业整体车辆声学解决方案设计、开发和制造领域的全球领导者 • 该公司专注于开发和生产用于整车、系统和部件的空气噪声吸收、隔离和阻尼解决方案 • Carcoustics 的客户包括许多领先的汽车制造公司 • Carcoustics 的技术中心拥有令人印象深刻的测试和测量设施 • Carcoustics 已获得 ISO 14001 和 ISO 16949 的全球认证 • “对更安静、更舒适的车辆的需求不断增加” • Carcoustics 与 Brüel & Kjær 的合作关系可以追溯到 20 多年前 • 2002 年购买了 24 通道 PULSE 数据采集和分析系统 • “Brüel & Kjær 的质量非常出色,PULSE 是进行 NVH 测试的非常好的标准平台” • “我们正在扩大对 PULSE 和声全息术的使用,使用空间透射“声场的形成(STSF)软件类型 7688” • “很明显,STSF 技术将为我们带来多种好处 - 它将大大减少测量时间” • Carcoustics 不断扩大其在整车声学方面的能力 • Carcoustics 继续为客户提供创新、轻量、有效的声学和热管理解决方案,但它正在将这些解决方案带入新的市场领域,包括商用车和重型卡车,并进入亚洲市场
纤维素是多糖之一,是植物细胞壁的主要成分。在各种类型的纤维素中,纤维直径为4至100 nm,长度为几μM,长宽比为100或更多的纤维素的纤维素称为纤维素纳米纤维(CNF),并吸引了作为领先的生物量材料的注意力。除了CNF的轻重量和高强度外,它们还具有其他出色的功能,包括高气势屏障特性,吸附和透明度以及作为植物来源的材料,生产和处置的环境影响很小。将来,预计将使用汽车组件,电子材料,包装材料和其他应用。纳米纤维素材料的表面可以用硫酸盐基团和羧基等表面官能团修饰,以添加各种功能。在水中,这些表面官能团的离子部分充当带电组,从而提高了水分性。通常,电导滴定方法已用于对这些表面充电组的定量分析。尽管这是一种通用技术,但它存在许多问题,包括需要大量的样品材料(几百毫克)样品材料,但测量时间很长,需要视觉确认,并且结果是根据分析师而差异的。因此,不取决于单个分析师的技能来解决这些问题的简单方法。该实验是在新月大学的Jun Araki教授的合作中进行的。本文使用Shimadzu Ultraviolet-Visible Light(UV-VIS)分光光度计介绍了甲苯胺蓝O(TBO)吸附方法对表面官能团进行定量分析的示例。
深色发酵(DF)是一种生物学过程,能够从有机废物中产生氢气,这可以作为生物精炼厂中的基础发挥关键作用。,但仍需要优化DF的流体动力条件以增强气体液传质,从而减少了可溶性氢的自抑制作用。质量转移增强受到限制,因为对微生物的液压应力必须受到限制,并且该过程的经济可持续性必须保持。最近的结果表明,在层流和湍流方案之间的过渡区域中,DF增强了。为了更好地了解该制度中的3D流体动力特征,开发了一种改进的光学轨迹技术并将其应用于配备双型物件设备的2-L生物反应器。所提出的方法旨在同时使用三个摄像机来监测多达十个颗粒作为示踪剂的轨迹,但也能够在每个相机的2D图像中提供颗粒的实时位置,以最大程度地减少治疗后时间。应用了该方法,包括立体摄像机校准,实时和后处理以重建3D轨迹,并针对2D-PIV和CFD数据进行了验证。达成了良好的一致性,但是由于粒径,很难捕获附近壁和叶轮的区域。结果表明,与单个粒子作为示踪剂相比,使用五个颗粒的工作能够减少3-4的测量时间,而较高数量的示踪剂增加了伪像的镜头。
2D蓝图转换为3D模型是建筑,工程和建筑行业中最关键的任务之一。由于设计计划必须准确代表可视化和实现,因此传统方法始终是手动,乏味的,容易出现错误。随着计算机辅助设计(CAD),机器学习和计算机成像技术的进步,转换更准确,更有效。本文涉及新兴方法,以通过深度学习和图像处理技术自动化从2D蓝图到其3D模型的过渡。主要关注点是对2D渲染的几何形状,各种维度以及各种结构细节的解释深入了解,以及它可能包含的复杂和晦涩的信息。方法是在卷积神经网络下开发的,用于从2D图像中提取特征,然后是用于重建的生成模型。使用语义分割运行的系统,可以标识墙壁,门和窗户等实体。此外,使用3D网格生成算法将2D数据转换为3D结构。该方法利用建筑和工程设计中通常应用的数据集和基准进行模型培训和评估。评估测量时间,计算时间,噪声效能性能以及由于蓝图数据的嘈杂世界本质而引起的缩放。还考虑了一些规模和复杂性的问题,例如数据质量的要求。未来的前景包括用于实时相互作用的增强现实(AR)可视化以及基于激光雷达的传感器数据以提高精度。这为渲染极为可能的实时自动化技术提供了巨大的机会,这可能有益于缩短设计过程并增强许多领域的项目成果。
多项研究表明脑机接口 (BCI) 训练对中风康复具有积极的临床效果。本研究探讨了基于感觉运动节律 (SMR) 的 BCI 与音频提示、运动观察和多感觉反馈对中风后康复的疗效。此外,我们讨论了 BCI 训练中训练强度和训练持续时间之间的相互作用。24 名患有严重上肢 (UL) 运动障碍的中风患者被随机分为两组:2 周 SMR-BCI 训练结合常规治疗(BCI 组,BG,n = 12)和 2 周常规治疗(无 SMR-BCI 干预)(对照组,CG,n = 12)。使用临床测量量表测量运动功能,包括 Fugl-Meyer 上肢评估 (FMA-UE;主要结果测量)、Wolf 运动功能测试 (WMFT) 和改良 Barthel 指数 (MBI),测量时间分别为基线(第 0 周)、干预后(第 2 周)和随访周(第 4 周)。在第 0 周和第 2 周记录分配到 BG 的患者的 EEG 数据,并通过 mu 节律 (8-12 Hz) 的 mu 抑制均值事件相关去同步 (ERD) 进行量化。第 2 周时两组的所有功能评估评分(FMA-UE、WMFT 和 MBI)均显著提高(p < 0.05)。第 4 周时 BG 的 FMA-UE 和 WMFT 改善程度显著高于 CG。双侧半球的μ抑制与第2周的运动功能评分均呈正趋势。本研究提出了一种新的有效的SMR-BCI系统,并证明结合音频提示、运动观察和多感觉反馈的SMR-BCI训练与常规治疗相结合可以促进持久的UL运动改善。
本研究使用隐性和显性代理措施研究了扫视的代理感 (SoA)。在两个眼动追踪实验中,参与者将目光移向屏幕上的刺激物,随后该刺激物的颜色发生变化。然后,参与者要么重现扫视和颜色变化之间的时间间隔(实验 1),要么用听觉 Libet 时钟报告这些事件的时间点(实验 2),以测量时间绑定效应作为 SoA 的隐性指标。参与者要么被要求相信可以控制颜色变化,要么不相信(代理操纵)。显性评级表明因果信念的操纵以及代理是成功的。然而,时间绑定只对导致的结果明显,并且只有在使用足够敏感的程序时才会出现(听觉 Libet 时钟)。这表明时间绑定和 SoA 之间的联系比之前提出的要弱。结果还为以前从未经历过的动作-效果关联类型相对快速地获得代理感提供了证据。这表明,动作控制的根本过程可能植根于比以前认为的更复杂、适应性更强的认知模型。本研究中涉及的眼球运动 SoA 可能代表基于凝视的社交互动(社交主体感)或基于凝视的人机交互场景的重要认知基础。公共意义声明:本研究使用显性和隐性措施详细研究了非社交领域中眼球运动的主体感。因此,它提供了新颖而具体的见解,以理解由眼球运动引起的影响的主体感,以及对与全新获得的动作-效果关联类型有关的主体感的更广泛见解。眼球运动主体感可能代表基于凝视的社交互动(社交主体感)或基于凝视的人机交互场景的重要认知基础。由于眼球运动领域的特殊性,例如意志控制程度不同,眼球运动可以为未来研究中更普遍的主体感理论提供新信息。
摘要:宫颈微生物群对女性性健康至关重要,其改变状态似乎在高危型乳头瘤病毒 (hrHPV) 感染的动态中起着核心作用。本研究旨在评估根据 hrHPV 的细菌群落组成的变化。我们为每个女性采集了两个样本,两个样本之间的间隔为 12 ± 1 个月,并对其中 66 名女性进行了随访。通过定量 PCR (qPCR) 估计 hrHPV 的病毒载量 (VL),然后对其进行标准化(使用 HMBS 基因作为参考)并转换为 Log 10 尺度以便于解释。VL 分为阴性,无 hrHPV 拷贝;低,少于 10 0 hrHPV 拷贝;中等,介于 10 0 至 10 2 hrHPV 拷贝之间;高,>10 2 hrHPV 拷贝。通过 Illumina Novaseq PE250 平台描述微生物群组成。多样性分析揭示了 hrHPV VL 的变化,其中低 VL(<10 0 hrHPV 拷贝数)的女性表现出高多样性。群落状态类型 (CST) IV 是最常见的。然而,在高 VL 的女性中,发现与乳酸杆菌耗竭的关联较低。鸡乳杆菌和惰性乳杆菌是高 VL 女性中最丰富的物种,而低 VL 女性表现出乳酸杆菌优势的概率高出 6.06 倍。我们发现 78 种细菌属在低 VL 和高 VL 女性之间的丰度存在显著差异,其中 26 种被耗竭(例如,加德纳菌),52 种增加(例如,支原体)。多级混合效应线性回归显示,由于测量时间和 VL 之间的相互作用,多样性发生了变化,在第二次随访中,低 VL 的女性多样性下降(系数 = 0.47),而中等 VL 的女性多样性增加(系数 = 0.58)。在这里,我们首次报告宫颈微生物群受 hrHPV 拷贝数的影响,其中乳酸杆菌丰度下降、多样性增加和细菌类群丰富与低 VL 女性有关。