摘要:本文介绍了为对全差分放大器(FDDA)原型芯片样品进行实验评估而开发的测量电路和测试板。被测设备(DUT)是采用130nm CMOS技术设计和制造的超低压、高性能集成FDDA。FDDA的电源电压为400mV。在带有制造的FDDA芯片的测试板上实现了测量电路,以评估其主要参数和特性。在本文中,我们重点评估以下参数:输入失调电压、共模抑制比和电源抑制比。开发并验证了测试板。测得的测试板误差为38.73mV。FDDA的失调电压为-0.66mV。测得的FDDA增益和增益带宽分别为48dB和550kHz。除了测量板外,还开发了一个图形用户界面,以简化测量期间对被测设备的控制。
本论文讨论的另一个重要主题是 IGBT 模块的状态监测。为此,开发了一个功率循环测试台。选择 𝑉 𝐶𝐸(𝑜𝑛) 作为跟踪功率器件在整个循环测试过程中退化状态演变的参数。因此,构思并开发了一个在线 𝑉 𝐶𝐸(𝑜𝑛) 测量板。为了获得有关所应用循环协议的更多相关见解,开发了一种在线估计 IGBT 器件结温的策略,该策略基于卡尔曼滤波器的使用。该策略还能够通过分析热敏电参数来估计 IGBT 健康状态的退化程度。
研究了在100 mm硅基底上采用等离子体增强原子层沉积技术制备氮化铌薄膜,并研究了薄膜性质的异质性。直径为92mm时表面电阻分布的不均匀性为7%。使用X射线反射法测量板的中心部分和距离中心40毫米的四个位置的膜厚度分布的不均匀性为4%。在基板上的相同位置进行的 X 射线衍射没有显示反射有任何可见的变化。不同区域的晶格参数差异仅为0.06%。超导测量表明,在直径为80毫米时,超导转变温度的最大偏差为1.6%,临界电流密度的最大偏差为7%。
请注意,我的好医生,我目前有一个刚从巴黎运来的 Collin 之家的人体测量盒。这个盒子里有进行人体测量所需的所有仪器。里面有:厚度卡尺、滑动卡尺、人体测量板、人体测量幻灯片、头颅测量方尺、卷尺、两支彩色铅笔等。盒子舒适小巧;仪器可以拆开放进盒子里,旅行时随身携带。一切都做工精良,非常合适。正如您所见,我对这个人体测量盒很满意,明年我打算开始为米尼奥维亚纳区 800 名即将参加征兵检查的男性测量。我还打算测量一些女性,考虑到我们人民的可疑性格,这应该有点困难。我们拭目以待。[ 35 ]
测量纳米级表面力的难点在于,要知道悬臂尖端在给定偏转下对样品的压力有多大。这需要知道悬臂的弹簧常数——它在力的作用下弯曲的程度。NPL 的解决方案是使用参考弹簧,可以将 AFM 的悬臂与它进行比较。直径为十分之一毫米的电容器具有下部固定板和上部板,上部板的作用类似于承载小重量的小弹簧。施加到其中一个板上的电流会导致这对板相对于固定板上下移动。通过测量板之间的泄漏电流并使用光学干涉仪监测位移,可以计算出弹簧常数,而无需了解电容器几何形状的细节。这将使 NPL 能够开发一项新服务,在泰丁顿提供光学校准,并使该技术在场外可用于校准 AFM 悬臂。
TRON能量损失光谱被彻底考虑。研究表明,在底部电极中的氧气浓度较高(约14.2±0.1 at。%)与顶部电极相比(约11.4±0.5 at。%)。以下平均化学计量公式为锡0。52 o 0。20上衣和锡0。54 O 0。 26底部和底部电极的底部。 由于血浆中的氧杂质与SIO 2和HFO 2的扩散相比,血浆中的氧气量不足。 这种不对称性,以及在Si底物上生长的样品的结果表明,与从SIO 2底物和PEALD生长过程中从SIO 2底物和HFO 2介电介质的扩散相比,与血浆本身的氧杂质相比是一个较小的部分。 我们观察到HF氧化物层和Ti nitride Electrodes以及SIO 2界面之间的界面上的TIO 2存在。 EELS分析导致底部锡X O Y的带隙范围为2.2至2.5 eV,而顶部锡X O Y的带隙范围为1.7-2.2 eV,使用光吸收光谱与顶部Tin X电极(1.6±01 eV)上的结果公平吻合。 测量板电阻,电阻率和温度系数通过在20到100°C的顶部锡x o y电极上的四点探头的电阻系数对应于半导体的典型值。54 O 0。26底部和底部电极的底部。由于血浆中的氧杂质与SIO 2和HFO 2的扩散相比,血浆中的氧气量不足。这种不对称性,以及在Si底物上生长的样品的结果表明,与从SIO 2底物和PEALD生长过程中从SIO 2底物和HFO 2介电介质的扩散相比,与血浆本身的氧杂质相比是一个较小的部分。我们观察到HF氧化物层和Ti nitride Electrodes以及SIO 2界面之间的界面上的TIO 2存在。EELS分析导致底部锡X O Y的带隙范围为2.2至2.5 eV,而顶部锡X O Y的带隙范围为1.7-2.2 eV,使用光吸收光谱与顶部Tin X电极(1.6±01 eV)上的结果公平吻合。测量板电阻,电阻率和温度系数通过在20到100°C的顶部锡x o y电极上的四点探头的电阻系数对应于半导体的典型值。
该套件由两个已集成的内部标准的专利96孔滤清器组成,系统适用性测试样品,冻干校准标准和质量控制(QCS),这些(QCS)是根据协议重构的。实验样品,由11个人血浆样本(5名女性,6名男性,17-65岁,没有医学诊断),NIST SRM 1950和30个人类受试者的粪便池组成,并在WebIDQ中注册,并与校准和QC样品一起排列,并在96 Well板块上进行了排列。除校准标准以外的所有样品以三个重复测量。工作列表直接导出到质谱仪软件,并打印了用于套件准备的布局。粪便样品是根据生物陈列物方案制备的,用于使用先例均质剂和异丙醇作为提取溶剂来分析粪便。根据用户手册制备了在两个套件板中的每个孔中的10μl样品,然后进行衍生化,提取,最后稀释到三个单独的测量板中:一个用于LC-MS/MS:FIA-MS/MS(量子500和XL零件)。