摘要。视频时间基础旨在确定与给定自然语言查询最相关的未修剪视频中的视频片段。现有的视频时间本地化模型依靠特定的数据集进行培训,数据收集成本很高,但在跨数据库和分发(OOD)设置下表现出较差的概括能力。在本文中,我们提出了一种降雨,以利用预先训练的大型模型的能力,从而利用了EDEO T EMPORAL G圆形(TFVTG)方法。天真的基准是在视频中列举建议,并使用预先训练的视觉语言模型(VLM)根据视觉语言对齐来选择最佳建议。然而,大多数Exting VLM都经过图像文本对或修剪的视频剪辑对训练,这使得(1)抓住关系并区分同一视频中多个事件的时间边界; (2)在视频中理解并敏感事件的动态过渡(从一个事件到另一个事件的过渡)。要解决这些问题,首先,我们建议利用大型语言模型(LLMS)分析查询文本中包含的多个子事件,并分析这些事件之间的时间顺序和关系。其次,我们将一个子事件分为动态过渡和静态状态部分,并使用VLMS提出动态和静态评分功能,以更好地评估事件和描述之间的相关性。代码可在https://github.com/minghangz/tfvtg上找到。最后,对于LLMS提供的每个子事件描述,我们使用VLMS定位与描述最相关的TOP-K提案,并利用LLMS提供的子事件的OR-DER和关系来过滤和集成这些建议。我们的方法在Charades-STA和ActivityNet字幕数据集上的零照片视频基础上实现了最佳性能,而无需进行任何培训,并在跨数据库和OOD设置中展示了更好的通用功能。
东非医学杂志卷。101号2024年11月11日,在肯尼亚Loise Ndirangu的选定五级医院新诊断为2型糖尿病的成年患者的自我保健习惯农业和技术,(JKUAT),邮政信箱62000-00200,内罗毕,肯尼亚,肯尼亚,华莱士·卡鲁古蒂,乔莫·肯雅塔大学农业与技术大学(JKUAT)P.O Box 62000-00200,肯尼亚内罗毕,肯尼亚,肯尼亚,LISTER ONSONGO,P.Onsongo,P.Obothoath,P.O Box,P.O Box 62000-00200。内罗毕,肯尼亚。通讯作者:洛斯·恩迪兰奇(Loise Ndirangu),乔莫·肯雅塔(JOMO KENYATTA)农业技术大学护理科学学院(JKUAT),邮政信箱62000-00200,肯尼亚内罗毕。电子邮件:nndirangu35@gmail.com
在量子科学中,表征强关联物质是一项日益重要的挑战,因为其结构常常被大量纠缠所掩盖。越来越明显的是,在量子领域,状态准备和表征不应分开处理——将这两个过程纠缠在一起可在信息提取方面带来量子优势。在这里,我们提出了一种结合绝热态准备和拉姆齐光谱学的方法,我们称之为“多体拉姆齐干涉法”:利用我们最近开发的计算基态和多体本征态之间的一对一映射,我们准备一个由辅助量子比特的状态控制的多体本征态叠加,让叠加演化出相对相位,然后逆转准备协议以解开辅助量子比特的纠缠,同时将相位信息重新定位到其中。然后,辅助量子比特断层扫描提取有关多体本征态、相关激发光谱和热力学可观测量的信息。这项工作证明了利用量子计算机有效探索量子物质的潜力。
双光子频率梳 (BFC) 是用于大规模和高维量子信息和网络系统的有前途的量子源。在这种情况下,单个频率箱的光谱纯度对于实现量子网络协议(如隐形传态和纠缠交换)至关重要。测量组成 BFC 的未预告信号或闲置光子的时间自相关函数是表征其光谱纯度并进而验证双光子状态对网络协议的实用性的关键工具。然而,通过实验可获得的测量 BFC 相关函数的精度通常受到探测器抖动的严重限制。结果,相关函数中的精细时间特征(不仅在量子信息中具有实用价值,而且在量子光学研究中也具有根本意义)丢失了。我们提出了一种通过电光相位调制来规避这一挑战的方案,通过实验证明了集成 40.5 GHz Si 3 N 4 微环产生的 BFC 的时间分辨 Hanbury Brown-Twiss 特性,最高可达 3 × 3 维二四分体希尔伯特空间。通过使电光驱动频率从梳状的自由光谱范围略微失谐,我们的方法利用 Vernier 原理来放大时间特征,否则这些特征会被探测器抖动平均掉。我们在连续波和脉冲泵浦模式下展示了我们的方法,发现与理论高度一致。我们的方法不仅揭示了贡献频率箱的集体统计数据,还揭示了它们的时间形状 - 标准全积分自相关测量中丢失的特征。
;路易吉·卡恰普蒂;塞尔吉奥·卡拉特罗尼;本杰明·卡努埃尔;基娅拉·卡普里尼;安娜·卡拉梅特;劳伦蒂乌卡拉梅特;马泰奥·卡莱索;约翰·卡尔顿;马特奥·卡萨列戈;瓦西利斯·查曼达里斯;陈玉傲;玛丽亚·路易莎·基奥法洛;阿莱西娅·辛布里;乔纳森·科尔曼;弗洛林·卢西安·康斯坦丁;卡洛·R·孔塔尔迪;崔亚欧;埃莉莎·达罗斯;加文·戴维斯;埃丝特·德尔·皮诺·罗森多;克里斯蒂安·德普纳;安德烈·德列维安科;克劳迪娅·德·拉姆;阿尔伯特·德罗克;丹尼尔·德尔;法比奥·迪·庞波;戈兰·S·乔尔杰维奇;巴贝特·多布里希;彼得·多莫科斯;彼得·多南;迈克尔·多瑟;扬尼斯·德鲁加基斯;雅各布·邓宁安;阿利舍尔·杜斯帕耶夫;萨扬·伊索;约书亚·伊比;马克西姆·埃夫雷莫夫;托德·埃克洛夫;格德米纳斯·埃勒塔斯;约翰·埃利斯;大卫·埃文斯;帕维尔·法捷耶夫;马蒂亚·法尼;法里达·法西;马可·法托里;皮埃尔·费耶;丹尼尔·费莱亚;冯杰;亚历山大·弗里德里希;埃琳娜·福克斯;纳瑟尔·加鲁尔;高东风;苏珊·加德纳;巴里·加勒威;亚历山大·高格特;桑德拉·格拉赫;马蒂亚斯·格瑟曼;瓦莱丽·吉布森;恩诺·吉斯;吉安·F·朱迪斯;埃里克·P·格拉斯布伦纳;穆斯塔法·京多安;马丁·哈内尔特;蒂莫·哈库利宁;克莱门斯·哈默勒; Ekim T. Hanımeli;蒂芙尼·哈特;莱昂妮·霍金斯;奥雷利恩·希斯;杰瑞特·海斯;维多利亚·A·亨德森;斯文·赫尔曼;托马斯·M·赫德;贾森·M·霍根;博迪尔·霍尔斯特;迈克尔·霍林斯基;卡姆兰·侯赛因;格雷戈尔·詹森;彼得·耶格利奇;费多·耶莱兹科;迈克尔·卡根;马蒂·卡利奥科斯基;马克·卡塞维奇;亚历克斯·凯哈吉亚斯;伊娃·基利安;苏门·科利;贝恩德·康拉德;约阿希姆·科普;格奥尔吉·科尔纳科夫;蒂姆·科瓦奇;马库斯·克鲁兹克;穆克什·库马尔;普拉迪普·库马尔;克劳斯·拉默扎尔;格雷格·兰茨伯格;迈赫迪·朗格卢瓦;布莱尼·拉尼根;塞缪尔·勒鲁什;布鲁诺·莱昂内;克里斯托夫·勒庞西·拉菲特;马雷克·莱维奇;巴斯蒂安·莱考夫;阿里·莱泽克;卢卡斯·隆布里瑟; J.路易斯·洛佩兹·冈萨雷斯;埃利亚斯·洛佩兹·阿萨马尔;克里斯蒂安·洛佩斯·蒙哈拉兹;朱塞佩·加埃塔诺·卢西亚诺;马哈茂德;阿扎德·马勒内贾德;马库斯·克鲁兹克;雅克·马托;迪迪埃·马索内特;阿努帕姆·马宗达尔;克里斯托弗·麦凯布;马蒂亚斯·梅斯特;乔纳森菜单;朱塞佩·梅西尼奥;萨尔瓦多·米卡利齐奥;彼得·米林顿;米兰·米洛舍维奇;杰里迈亚·米切尔;马里奥·蒙特罗;加文·W·莫利;尤尔根·穆勒; Özgür E. Müstecapl ioğlu ;倪伟头 ;约翰内斯·诺勒;塞纳德·奥扎克;丹尼尔 KL 爱;亚西尔·奥马尔;朱莉娅·帕尔;肖恩·帕林;索拉布·潘迪;乔治·帕帕斯;维奈·帕里克;伊丽莎白·帕萨坦布;埃马努埃莱·佩鲁基;弗兰克·佩雷拉·多斯桑托斯;巴蒂斯特·皮斯特;伊戈尔·皮科夫斯基;阿波斯托洛斯·皮拉夫齐斯;罗伯特·普朗克特;罗莎·波贾尼;马可·普雷维德利;朱莉娅·普普蒂;维什努普里亚·普蒂亚·维蒂尔;约翰·昆比;约翰·拉菲尔斯基;苏吉特·拉詹德兰;恩斯特·M·拉塞尔;海法 雷杰布·斯法尔 ;塞尔日·雷诺;安德里亚·里查德;坦吉·罗津卡;阿尔伯特·鲁拉;扬·鲁道夫;迪伦·O·萨布尔斯基;玛丽安娜·S·萨夫罗诺娃;路易吉·圣玛丽亚;曼努埃尔·席林;弗拉基米尔·施科尔尼克;沃尔夫冈·P。施莱希;丹尼斯·施利珀特;乌尔里希·施奈德;弗洛里安·施雷克;克里斯蒂安·舒伯特;尼科·施韦森茨;阿列克谢·谢马金;奥尔加·塞尔吉延科;邵丽静;伊恩·希普西;拉吉夫·辛格;奥古斯托·斯梅尔齐;卡洛斯·F·索普尔塔;亚历山德罗·DAM·斯帕利奇;佩特鲁塔·斯特凡内斯库;尼古拉斯·斯特吉乌拉斯;扬尼克·斯特罗勒;克里斯蒂安·斯特鲁克曼;西尔维娅·坦廷多;亨利·斯罗塞尔;古列尔莫·M·蒂诺;乔纳森·廷斯利;奥维迪乌·廷塔雷努·米尔恰;金伯利·特卡尔切克;安德鲁. J.托利;文森扎·托纳托雷;亚历杭德罗·托雷斯-奥胡埃拉;菲利普·特罗伊特兰;安德里亚·特罗姆贝托尼;蔡玉岱;克里斯蒂安·乌弗雷希特;斯特凡·乌尔默;丹尼尔·瓦鲁克;维尔·瓦斯科宁;维罗尼卡·巴斯克斯-阿塞韦斯;尼古拉·V·维塔诺夫;克里斯蒂安·沃格特;沃尔夫·冯·克利青;安德拉斯·武基奇斯;莱因霍尔德·瓦尔泽;王金;尼尔斯·沃伯顿;亚历山大·韦伯-日期;安德烈·温兹劳斯基;迈克尔·维尔纳;贾森·威廉姆斯;帕特里克·温德帕辛格;彼得·沃尔夫;丽莎·沃尔纳;安德烈·雪雷布;穆罕默德·E·叶海亚;伊曼纽尔·赞布里尼·克鲁塞罗;穆斯林扎雷;詹明生;林周;朱尔·祖潘;埃里克·祖帕尼奇
Zbigniew PERSKI 1) *、Andrzej BORKOWSKI 2) 、Tomasz WOJCIECHOWSKI 3) 和 Antoni WÓJCIK 1) 1) 波兰地质研究所 - 国家研究所。喀尔巴阡分校,Skrzatow 1, 31-560 克拉科夫,2)弗罗茨瓦夫环境与生命科学大学,大地测量与地理信息学研究所,Grunwaldzka 53, 50-357 弗罗茨瓦夫,波兰 3)西里西亚大学,系基础地质学,Bedzinska 60, 41-200 Sosnowiec,波兰 * 通讯作者的电子邮件:zper@pgi.gov.pl ( 2011 年 1 月收到,2011 年 8 月接受) 摘要 本文介绍了对ERS-1/2 卫星获取的波兰南部罗兹诺湖同一区域的两个档案 SAR 数据集。两个数据集涵盖了相同的 8 年时期(1992 年 - 2000 年),并且通过相邻卫星轨道之间的 50% 重叠来指代同一区域。的主要目的是该分析旨在得出使用 PSI(持久散射体干涉测量法)计算的变形速度重叠数据。呈现的 PSI 结果是指位于活跃滑坡上的 PS(持久散射体),因此代表滑坡运动。 div>在波兰喀尔巴阡山脉,由于城市化稀疏、植被和地势起伏不平,获得的 PS 密度通常不是很高,而且通常很难解释。应用两个重叠数据集,其中两个它们观察到相同的现象,可以通过识别共同的 PS 点来交叉验证数据。对于从不同轨道获取的两个数据集,通常许多 PS 并不常见并且发生在不同的位置。这种情况可以通过两次采集的入射角差异来解释。在两条轨道的情况下,不同的地形物体可能充当 PS。通过连接来自这些相邻轨道的 PS 点集,可以显著增加 PS 的密度。为了对 Roznow 湖进行 PSI 分析,使用了从 179 和 408 条轨道获取的数据并从 PSI 处理中获得了数百个 PS。对于这两条轨道,都获得了相似的变形速度,范围在 +/- 6 毫米/年内。PS 点活跃的山体滑坡通常与建筑物(墙壁、屋顶)和道路有关,通常受高风险影响。关键词:山体滑坡、持续散射干涉测量、SAR 干涉测量、激光雷达、喀尔巴阡山脉
摘要在这项工作中,我们显示了使用第二代3D圆柱形微型探测器的低能质子束对具有治疗质量质量的低能质子束的测量。传感器属于基于硅的新型3D微型探测器设计的改进版本,其在西班牙的国家微电子中心(IMB-CNM,CSIC)制造的电极刻在硅内部。使用直径25μm的准螺旋电极和硅体积内20μm的深度使用了一种新的微技术,从而产生了良好的圆柱辐射敏感性。在国家加速器中心(西班牙CNA)的回旋子的18 MeV质子梁线上测试了这些探测器。它们被组装成内部的低噪声读数电子设备,以治疗等效的功能率评估其性能。微量测量光谱,这与沿Bragg曲线的不同深度相对应。在硅中的实验y f值从远端边缘(27.4±2.3)的入口处(27.4±2.3)kevμm -1在远端边缘(27.4±2.3)的入口中(在(27.4±2.3)的入口中。脉冲高能光谱与蒙特卡洛模拟进行了交叉检查,并获得了出色的一致性。这项工作证明了第二代3D-微型估计器的能力,以与质子治疗中临床中心中使用的速率相同的流量速率评估准确的显微标准分布。
我们考虑了一大类拉姆齐干涉测量协议,这些协议通过在相位信号印在 N 个粒子的集体自旋上之前和之后进行压缩和非压缩操作而得到增强。我们报告了针对任何给定粒子数和 (非) 压缩强度的分析优化。即使在压缩和非压缩相互作用期间包含实验相关的退相干过程,也可以应用这些结果。然而,本文不考虑两种相互作用之间的噪声。这提供了压缩回波协议的广义表征,恢复了许多已知的量子计量协议作为局部灵敏度最大值,从而证明了它们的最优性。我们发现了一个新的协议。其灵敏度增强依赖于压缩的双重反转。在一般的回声协议类别中,新发现的过度解扭曲协议由于其在强集体失相情况下的海森堡缩放而被挑选出来。
詹姆斯·韦伯太空望远镜 (JWST) 1 光学望远镜元件 (OTE) 是一个三镜消像散镜,由一个直径 6.5 米、分段式轻型主镜 (PM)、一个次镜和一个三镜组成。测量结构是一种轻型碳纤维复合结构(图 1)。轻型镜和结构技术开发以及望远镜是否满足其在轨性能要求需要最先进的干涉测量法,该干涉测量法具有高灵敏度、快速曝光时间和对振动不敏感的特点。瞬时相移干涉测量法满足了这些要求,其中像素化相位掩模允许同时捕获所有四个相移干涉图。这项技术是关键特性,使我们能够成功展示 JWST 望远镜轻型镜和大型轻型复合结构所需的技术就绪水平,制造主镜部分并验证其在低温下的性能,在环境测试之前和之后对完全组装的望远镜进行曲率中心测试,并在约翰逊航天中心在低温下对主镜进行相位调整。 4D Technology(现为亚利桑那州图森市 Onto Innovation 的子公司)为 JWST 项目建造了几台专用干涉仪(图 2),包括 PhaseCam、电子散斑干涉仪 (ESPI)、高速干涉仪 (HSI) 和多波干涉仪。
摘要背景:2019年冠状病毒疾病(Covid-19)大流行,是由严重的急性呼吸综合症冠状病毒-2(SARS-COV-2)引起的,比SARS,MERS,H1N1和EBOLA的流行病的综合寿命要多。当前,预防和控制差是Covid-19管理中的目标,因为没有特定药物可以治愈或可预防的疫苗。因此,许多研究组探讨了药物的重新利用,并且已经检查了许多靶蛋白。主要蛋白酶(M pro)和RNA依赖性RNA聚合酶(RDRP)是SARS-COV-2中的两个靶蛋白,这些靶蛋白已经过验证并进行了广泛研究,以进行Covid-19的药物开发。RDRP在两个先前已知的冠状病毒SARS-COV和MERS-COV之间具有高度同源性。方法:在这项研究中,使用Schrodinger的计算机辅助药物发现工具,将FDA批准的药物库停靠在RDRP的活跃部位上。结果:我们已经从标准的精度对接和互动研究中与酶上的活性位点结合的相互作用研究入围了14种药物。这些药物是抗生素,NSAIDS,降低脂肪,凝血,溶栓和抗过敏药。在分子动力学模拟中,pitavastatin,ridogrel和rosoxacin在通过ARG555和Divalent镁与活性位点表现出了优越的结合。结论:可以在临床前和临床研究中进一步优化pitavastatin,Ridogrel和Rosoxacin,以确定它们在Covid-19治疗中的可能作用。