日益增加的锂离子电池需要进一步的安全测试和评估。最重要的是要理解不同的测试条件的影响,尤其是用于验证计算机模型。文献中有大量来自热失控测试的数据,但很少有来自大型测试系列的数据。评估不同测试条件的影响的缺失系统方法意味着在比较测试结果时的不确定性。此外,细胞发育中的快速速度(包括对较大细胞的使用越来越多)需要验证先前发表的结果。这项工作介绍了来自37个测试的热失控数据,对一种大格式棱镜锂离子细胞(157 AH)。测试是在封闭压力容器中进行的,该封闭压力容器以及惰性气氛以及排气收集器引擎盖下方的开放设置。此外,采用了六种不同的热失控触发方法以及四种不同的电荷状态。重点放在产生的气体上,这是安全评估的关键方面。将结果与文献数据进行了比较,并提出了一种新的修改方法来计算封闭压力容器中的特征发泄速率。可以得出结论,触发方法会影响电池的气体产量,质量损失和最高温度,并影响其电荷状态。大细胞格式可能会影响特定的总气体产生并增强不同触发方法的影响,但对其他评估参数的影响很小。由于测试设置的不同,在测试结果中没有明显差异,除了由于环境大气中释放的气体的潜在燃烧而导致的差异。
1 新加坡科技研究局 (A*STAR) 高性能计算研究所 (IHPC),1 Fusionopolis Way, No. 16-16 Connexis,新加坡 138632,新加坡 2 南洋理工大学物理与数学科学学院南洋量子中心,新加坡 637371,新加坡 3 香港大学计算机科学系 QICI 量子信息与计算计划,香港薄扶林道 4 苏黎世联邦理工学院理论物理研究所,8093 苏黎世,瑞士 5 复旦大学电磁波信息科学教育部重点实验室,上海 200433,中国 6 新加坡国立大学量子技术中心,新加坡 117543,新加坡 7 MajuLab,CNRS-UNS-NUS-NTU 国际联合研究单位,UMI 3654,新加坡 117543,新加坡
目前,人们致力于实现分子的精密光谱和量子态控制。与原子相比,分子的种类要多得多,它们具有更丰富的结构,可以提供完全不同的功能,并更适合某些任务,例如,对各种基础物理测试的灵敏度更高[1-4]。高内部状态相干性和跨频率量子信息转换的潜力也使分子在量子信息处理方面具有吸引力[5-9]。尽管近年来取得了令人瞩目的进展,但分子的量子态制备、检测和控制仍然比原子更困难[10-14]。量子逻辑光谱(QLS)[15]在研究带电粒子,特别是分子离子方面显示出巨大的前景和多功能性。它依靠原子“逻辑”离子种类对联合平移运动进行协同冷却和状态读出,并能够实现难以控制的带电粒子(“光谱”离子)的量子态制备、操纵和光谱分析[16-18]。在我们的实验中,所有针对分子离子的激光器都会驱动远失谐的受激双光子拉曼跃迁,而这些跃迁不依赖于分子的特定能级结构。这一点,加上对平移自由度的协同冷却和量子逻辑读出也可以在对分子结构细节要求不高的情况下进行,使得 QLS 可用于多种离子种类。为了探索分子的新应用,以高分辨率测量跃迁频率和其他特性,并解释在这种前所未有的精度水平下变得相关的微小系统效应也至关重要。特别是,自旋和原子核的相对运动增加了
* Strasberg,Philipp,Kavan Modi和Michalis Skotiniotis。“实施投影测量需要多长时间?”。欧洲物理学杂志43.3(2022):035404。
图理论措施经常被用来研究阿尔茨海默氏病人脑连接组中的连通性中断。然而,先前的研究指出,图创建方法的差异是可能改变这些措施中发现的拓扑观察的混杂因素。在这项研究中,我们进行了一项新的研究,以了解针对从扩散张量成像得出的纤维密度网络计算出的图形理论措施的影响。We computed 4 network-wide graph theoretical measures of average clustering coefficient, transitivity, characteristic path length, and global efficiency, and we tested whether these measures are able to consistently identify group differences among healthy control (HC), mild cognitive impairment (MCI), and AD groups in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort across 5 scales of the Lausanne分析。我们发现,旋转性的分离度量在区分健康和患病群体方面提供了范围内最大的一致性,而其他措施则受到不同程度量表的选择的影响。全球效率是我们测试的第二个最一致的度量,该度量可以在所有5个量表中以及在5个量表中的3个量表中区分HC和MCI。特征路径长度对尺度变化高度敏感,证实了先前的发现,并且无法识别许多尺度的群体差异。平均聚类系数也受到量表的极大影响,因为它始终未能识别出较高分辨率分析中的群体差异。从这些结果中,我们得出结论,许多图理论度量对选择量表的选择敏感,并且需要进一步发展方法,以更加强大地表征AD的关系与连通性中断的关系。
德国神经病学系的莱比锡大学医学中心,B Max Planck人类认知与脑科学研究所,神经病学系,莱比锡,德国莱比锡认知神经病学诊所,莱比锡大学医院,莱比锡,德国莱比锡,德国D Banner Alzheimer的Alzheimer Institutes Phoenix, AZ, USA g School of Mathematics and Statistics (KC), Neurodegenerative Disease Research Center (EMR), Arizona State University, USA h Department of Neurology, College of Medicine – Phoenix (KC), Department of Psychiatry (EMR), University of Arizona, USA e Neurogenomics Division, Translational Genomics Research Institute, University of Arizona, and Arizona State University, Phoenix,美国亚利桑那州立大学I横幅 - 阿里佐纳州立大学神经退行性疾病研究中心,生物设计学院,亚利桑那州立大学,大学,亚利桑那州,美国亚利桑那州坦佩市J.
2 https_www.isobudgets.com 3 Based on Https//www.definitions.net/definition/Reproducibility 4 Adapted from https://www.favv-afsca.be/labos/erk-alg/_documents/03-11-2008-procedureENLAB-P-508-Measurement- uncneyty-v.01_en.pdf和https://sisu.ut.ut.ee/lcms_method_validation/41-precision-trueness-accuracy(2022)5 https://sisu.ee.ee.ee.ee/lcms_method_method_method_validegeny enpertimenti https:// www.itl.nist.gov/div898/handbook/
作者地址:Thomas Kosch,柏林大学,德国柏林,thomas.kosch@hu-berlin.de; Jakob Karolus,德国人工智能研究中心,德国凯泽斯劳滕,jakob.karolus@dfki.de;约翰内斯·扎格曼 (Johannes Zagermann),康斯坦茨大学,德国康斯坦茨,johannes.zagermann@ uni-konstanz.de; Harald Reiterer,康斯坦茨大学,德国康斯坦茨,harald.reiterer@uni-konstanz.de; Albrecht Schmidt,慕尼黑大学,德国慕尼黑,albrecht.schmidt@ifi.lmu.de; Paweł W. Woźniak,瑞典哥德堡查尔姆斯理工大学,pawel.wozniak@chalmers.se。
摘要:我们研究了以量子测量和反馈为动力的基于耦合的热机。我们考虑了机器的两个不同版本:(1)量子麦克斯韦的恶魔,其中耦合 - 标准系统连接到可拆卸的单个共享浴室,以及(2)测量辅助冰箱,其中耦合 - Qubit-Qubit-Qubit-Qubit-Qubit-Qubit-qubit-Qubit with与热水浴室接触。在量子麦克斯韦的恶魔案例中,我们讨论了离散和连续测量。我们发现,可以通过将其耦合到第二个量子位来提高基于单个基于Qubit的设备的功率输出。我们进一步发现,与仅执行单倍测量的两个平行操作的两个设置相比,这两个量子位的同时测量都可以产生更高的净热量提取。在冰箱情况下,我们使用了连续的测量和统一操作来为基于耦合的冰箱供电。我们发现,可以通过进行合适的测量来增强使用交换操作运行的冰箱的冷却能力。
摘要对于某些受限制的计算任务,量子力学在任何可能的经典实现方面都提供了可证明的优势。使用了基于测量的量子计算(MBQC)的框架证明了其中几个结果,其中非局部性和更常见的上下文性已被确定为某些量子计算的必要资源。在这里,我们通过在允许的操作和可访问量子的数量上完善其资源需求,从而更详细地考虑MBQC的计算能力。更确切地说,我们确定可以在非自适应MBQC中计算哪些布尔函数,其本地操作包含在Clifford层次结构中的有限级别内。此外,对于限制于某些子理论(例如稳定器MBQC)的非自适应MBQC,我们计算计算给定布尔函数所需的量子数量最少。我们的结果指出了资源的层次结构,这些层次结构更敏锐地描述了MBQC的力量,而不是上下文性与非上下文性的二进制。