线边缘粗糙度 (LER) 的测量最近已成为光刻计量学界和整个半导体行业关注的话题。高级计量咨询小组 (AMAG) 是由国际 SEMATECH (ISMT) 联盟成员公司和美国国家标准与技术研究所 (NIST) 的首席计量学家组成的委员会,该委员会有一个项目,旨在研究 LER 指标并指导关键尺寸扫描电子显微镜 (CD-SEM) 供应商社区采用半导体行业支持的标准化解决方案。2003 年国际半导体技术路线图 (ITRS) 包含了粗糙度的新定义。ITRS 设想了边缘和宽度粗糙度的均方根测量。还有其他可能的指标,其中一些在这里进行了调查。ITRS 设想将均方根测量限制在粗糙度波长范围内,该波长落在指定的工艺相关范围内,并且测量重复性优于指定的公差。本研究解决了满足这些规范所需的测量选择。推导出必须测量的线长表达式以及沿该长度的测量位置间距。图像中的噪声会产生粗糙度测量误差,这些误差既有随机成分,也有非随机成分(即偏差)。在特殊测试图案中报告了对紫外线抗蚀剂和多晶硅的测量结果,这些材料的粗糙度是典型的。这些测量表明,粗糙度测量对噪声的灵敏度主要取决于边缘检测算法的选择和焦点的质量。当使用基于模型或 S 形拟合算法且图像对焦良好时,测量对噪声的敏感度较低。使用测量的 UV 抗蚀剂线的粗糙度特性并应用 ITRS 对 90 nm 技术节点的要求,得出的采样长度和采样间隔表达式意味着必须以 7.5 nm 或更小的间隔测量至少 8 倍节点(即 720 nm)的线长。
来自测量飞机和 GPS 基站的原始现场数据可以立即处理,以产生沿测量线的自由空间和布格重力异常。处理后的数据可以导出到地图绘制软件包(例如 geosoft oasis montaj)或通用地图绘制工具 (gmt),以执行诸如测量线水准测量、网格化和地图绘制等任务。通过快速的数据周转,可以识别数据质量问题和可能的系统问题,并及时处理操作问题。
本手册中描述的数字地图数据由德克萨斯州铁路委员会的地理信息系统生成,仅供参考。基础地图信息直接来自美国地质调查局 7.5 分四边形地图。德克萨斯州土地总局地图上的专利测量线在美国地质调查局基础上尽可能准确地解释。油气井数据或管道数据(如果包含)来自铁路委员会的公共记录。提取此数据的地图系统目前正在开发中,并不断更新和完善。这些数据仅供铁路委员会内部使用,铁路委员会不对其准确性或完整性作出任何声明。用户负责检查此数据的准确性、完整性、时效性和/或适用性。
模块 I(12 小时)线性测量和链式测量:使用链条和卷尺测量线的正确长度、直接和间接测距、沿倾斜地面进行链式测量。链式测量中的障碍、错误及其消除。罗盘测量:使用棱镜罗盘、临时调整、线路方位、当地景点、方位校正。模块 II(10 小时)水准测量:使用水准仪和水准标尺。水准仪的临时和永久调整、通过仪器高度降低水准仪以及升降法。曲率和折射误差、水准管的灵敏度、相互水准测量、水准测量困难和常见错误、自动和电子或数字水准仪。模块 III(7 小时)等高线测量:等高线间隔和水平当量、等高线特征、等高线测量方法——不同和间接方法、等高线梯度。模块 IV(8 小时)经纬仪测量:经纬仪的使用、临时调整、测量水平和垂直角度、经纬仪横移。 ] 模块 V(8 小时)现代测量仪器 - 电磁波谱、雷达、电子测距、EDM 设备、测量校正、数字经纬仪、全站仪、遥感和 GIS 简介。 书籍:
摘要机器学习技术在量子控制中解决问题以及解决优化问题的已建立几何方法自然而然地探索了如何使用机器学习方法来增强量子信息处理中问题的几何方法。在这项工作中,我们审查并扩展了深度学习的应用到量子几何控制问题。特别是,在量子电路合成问题的背景下,我们通过应用新颖的深度学习算法来展示时间 - 最佳控制的增强能力,以便近似于与低维度多数Qubit系统相关的地理学(因此最小电路)近似地理学(以及最小的电路),例如SU(2),SU(2),SU(4)和SU(4)和SU(4)和(8)。我们演示了Greybox模型的出色性能,该模型将传统的黑框算法与白框模型(编码量子力学的先前领域知识)结合在一起,作为学习兴趣的基础量子电路分布的手段。我们的结果证明了几何控制技术如何使用(a)验证几何合成的量子电路沿着测量线沿着几何合成的程度,从而时间优化,途径,途径和(b)合成这些电路。我们的结果对量子控制和量子信息理论的研究人员感兴趣,该理论寻求将机器学习和几何技术结合起来,以解决时间优势控制问题。
East Lampung Regency“ Gua Pandan”的Geopark旅游区之一已陷入地面上的岩石沉降。作为预防沉降的一部分,应用了电阻率和充电性分析之间的间接电气方法,以确定研究区域中地下洞穴的存在。使用Wenner Alpha和Wenner Schlumberger阵列进行了两条测量线。因为深度目标是浅(约10 m),并且为了获得更好的分辨率,因此每条线的拉伸长度为70 m和2 m电极间距。在一个已知的地下洞穴上测量了一条线以产生预期的结果,另一个是在没有腔的区域中。基于每个电阻率和充电性的结果,空气填充的目标的值分别超过5,000 𝛺𝑚和6 ms。然后,两种方法的集成处理产生了金属因子(MF)曲线,以查看洞穴/腔的存在和估计的形状。结果表示1.5 ms/ωm以下的MF值是一个空腔,实心岩石超过1.5 ms/ωm。另外,来自两种配置的MF级别都列出了一个类似的部分。然而,在估计温纳APHA的腔形状几何形状时发生了适度的差异,对于Wenner Schlumberger而言,对于Wenner APHA而言为14×4𝑚。此外,这项研究可能是该地区安全评估的第一步。
摘要背景:哥伦比亚陆军第一飞机维修营必须定期测试比奇空中国王飞机上发电机控制单元 (GCU) 的性能,这迫使操作员采取不舒服且不符合人体工程学的身体姿势。本文建议为这些装置使用便携式数字故障排除测试台,以方便进行测量、解释获取的信息和生成技术报告。方法:使用航空技术创新项目开发的集成、创新、过程模型 (IIP) 设计测试台。然后,定义其功能模块,并包括电压和阻抗测量设备、内部报告存储系统和用户界面。与技术操作员一起在现有的比奇空中国王 C-90、200、B 200、300 和 350 系列飞机上进行测试。最后,制定了一份技术报告来验证测试台的结果。结果:执行测试所需的操作员数量从四人减少到一人。数字测试台只需要操作员连接测量线束,因此可以改善人员的人体工程学。使用该台,GCU 的审查和评估时间从 120 分钟减少到 26 分钟,这意味着燃料消耗减少了 86.66%。结论:通过使用数字故障排除测试台,所需的操作员数量以及 GCU 的检查和评估时间都减少了,这意味着燃料费用减少了。其运输方便,可以在维修营机库外检查飞机,但应考虑实施 USB 端口来存储报告。关键词:航空学、航空电子设备、飞机、比奇王、GCU、测试台、故障排除。致谢:我们要感谢哥伦比亚国民军第一飞机维修营和航空学校对原型机开发的贡献。该项目由哥伦比亚国民军、科学技术科学部资助,内部代码为118315。语言:英语
摘要背景:哥伦比亚陆军第一飞机维修营必须定期测试比奇空中国王飞机上发电机控制单元 (GCU) 的性能,这迫使操作员采取不舒服且不符合人体工程学的身体姿势。本文建议为这些装置使用便携式数字故障排除测试台,以方便进行测量、解释获取的信息和生成技术报告。方法:使用航空技术创新项目开发的集成、创新、过程模型 (IIP) 设计测试台。然后,定义其功能模块,并包括电压和阻抗测量设备、内部报告存储系统和用户界面。与技术操作员一起在现有的比奇空中国王 C-90、200、B 200、300 和 350 系列飞机上进行测试。最后,制定了一份技术报告来验证测试台的结果。结果:执行测试所需的操作员数量从四人减少到一人。数字测试台只需要操作员连接测量线束,因此可以改善人员的人体工程学。使用该台,GCU 的审查和评估时间从 120 分钟减少到 26 分钟,这意味着燃料消耗减少了 86.66%。结论:通过使用数字故障排除测试台,所需的操作员数量以及 GCU 的检查和评估时间都减少了,这意味着燃料费用减少了。其运输方便,可以在维修营机库外检查飞机,但应考虑实施 USB 端口来存储报告。关键词:航空学、航空电子设备、飞机、比奇王、GCU、测试台、故障排除。致谢:我们要感谢哥伦比亚国民军第一飞机维修营和航空学校对原型机开发的贡献。该项目由哥伦比亚国民军、科学技术科学部资助,内部代码为118315。语言:英语
摘要 背景:哥伦比亚陆军第一飞机维修营必须定期测试比奇空中国王飞机上发电机控制单元 (GCU) 的性能,这迫使操作员采取不舒服且不符合人体工程学的身体姿势。本文建议为这些装置使用便携式数字故障排除测试台,以方便进行测量、解释获取的信息和生成技术报告。 方法:使用航空技术创新项目开发的集成、创新、过程模型 (IIP) 设计测试台。然后,定义其功能模块,并包括电压和阻抗测量设备、内部报告存储系统和用户界面。与技术操作员一起在现有的比奇空中国王 C-90、200、B 200、300 和 350 系列飞机上进行测试。最后,制定了一份技术报告来验证测试台结果。 结果:进行测试所需的操作员数量从四人减少到一人。数字测试台只需要操作员连接测量线束,因此可以改善人员的人体工程学。使用该台,GCU 的审查和评估时间从 120 分钟减少到 26 分钟,这意味着燃料消耗减少了 86.66%。结论:通过使用数字故障排除测试台,所需的操作员数量以及 GCU 的检查和评估时间都减少了,这意味着燃料费用减少了。由于运输方便,可以在维修营机库外检查飞机,但应考虑安装 USB 端口来存储报告。关键词:航空、航空电子设备、飞机、比奇王、GCU、测试台、故障排除。致谢:我们要感谢哥伦比亚国民军第一飞机维修营和航空学校对原型机开发的贡献。该项目由哥伦比亚国民军、科学技术部资助,内部代码为 118315。语言:英语
1 房产所有权地图绘制 1.1 简介 为了正确评估房地产,评估员必须拥有管辖范围内所有房产的完整地图,并定期更新以显示地块边界或其他物理特征的变化。税务地图是制定和维护公平评估系统的重要工具。它们对于清点县内所有房产并确保将其纳入税单是必不可少的。它们对于定位和识别要评估的房产至关重要,并且是确定计算土地估价所需的尺寸和面积的必要条件。税务地图,如《房产评估和评估术语表》中所定义,是“显示房产所有权边界并显示每个地块尺寸以及相关标识符、测量线和地役权的比例地图。” 1.2 法律和法规 1975 年阿拉巴马州法典第 40-7-27 条要求税务评估员在 2 月的最后一个星期一之前完成财产评估。为了满足此时间表,必须遵守以下绘图和评估时间表: 1.所有绘图,包括名称更改、拆分和新细分,都必须保持最新状态。2.提交给遗嘱认证办公室的契约和其他归属文书,包括遗嘱和记录的细分地图,应在文书提交给遗嘱认证办公室或提供给税务评估员办公室之日起 30 天内完全绘制并准备好进行现场审查。3.因此,10 月 1 日至 9 月 30 日之间执行的文书的映射将在 10 月 30 日之前完成。确定纳税年度的文书日期是签署日期,而不是在遗嘱认证办公室提交的日期。在大多数情况下,可以结合绘图进行书写,但在最坏的情况下不迟于 12 月 31 日。4.现场审查和评估应在每个归属文书的映射完成后立即开始。所有现场工作和评估应在 1 月 15 日之前完成,以便映射截至前一个 9 月 30 日的归属文书。5.所有物品、材料和用品以及工作产品应为县管理机构的财产。除非获得县级管理机构的书面授权,否则不得将所获取或生产的任何物品、材料、数据用于除满足测绘要求之外的任何其他目的。