流场;2) 从电池顶部连接到对电极集电器;3) 参比电极集电器;4) 对电极集电器;a) 集电器箔上的工作电极;b) 隔板;c) 参比电极(钠金属);d) 对电极(钠金属);e) 对电极安装板。b) DEMS 测量装置流程图。测量和控制单元的字母符号图例:C = 控制器,F = 流量,I = 指示器,P = 压力,T = 温度。
印度理工学院坎普尔分校的非侵入性成像和诊断卓越中心旨在建立一个协作环境,让来自不同学科的教师和学生与医学界共同合作。他们的目标是增强成像技术、创建创新的测量装置、开发先进的数据解释算法,并设计专门的仪器来增强患者护理。该中心致力于建立一个跨学科的工程医学环境,旨在提供尖端的医疗技术解决方案,以应对国家面临的广泛医疗保健挑战。
应使用完善的测量装置 [4] 校准已完成的光电探测器的响应度,以获得所需的不确定度。校准是针对低温辐射计 [5] 或传递标准探测器(图 4)进行的。在校准装置中,探测器的对准至关重要,对于反射陷阱探测器,通常观察到来自设备的反射光束沿着入射光束传播。对于微型陷阱,正确的对准具有挑战性,因为它的小有效区域隐藏在外壳中。另一方面,在陷阱配置中使用光电探测器的好处是,测量中反射光束的不良影响(例如进入前置光学器件等)减少了大约三个数量级。
摘要。医生要对呼吸道疾病做出最准确的诊断,必须尽可能准确地洞察问题。成像技术可以观察身体内部,不幸的是,例如肺是一个器官,没有造影剂就无法获得图像。此外,可以使用的方法是全身体积描记法或更好的选择,肺量计。肺量计的测量是通过肺速度描记器或肺量计进行的。肺量计测量肺容量和肺容量。肺速度描记器是流量测量装置,但也可以用于间接测量肺容量和容量。肺量图是肺量计测量的结果。
我们提出了一种基于 Xilinx 16 通道射频片上系统 (RFSoC) 设备的超导量子比特控制和测量装置。建议的装置由四部分组成:多个 RFSoC 板、用于跨多个板同步每个数模转换器 (DAC) 和模数转换器 (ADC) 通道的装置、用于调整量子比特频率的低噪声直流电源以及用于远程执行实验的云访问。我们还设计了没有物理混频器的装置。RFSoC 板使用高达第三奈奎斯特区的十六个 DAC 通道直接生成微波脉冲,这些微波脉冲由第五和第九个区域之间的八个 ADC 通道直接采样。由 AIP Publishing 独家出版。https://doi.org/10.1063/5.0081232
定义了一种用于评估电热 (EC) 材料冷却效率的新品质因数,其中将热性能与材料的损耗共同考虑。使用专门开发的基于柔性热敏电阻的测量装置,直接测量 P(VDF-TrFE-CFE) 电热聚合物薄膜的热效应和损耗。利用这些数据与新的品质因数,可以推断出所研究的 EC 材料在实际工作条件下的预期冷却效率。介电损耗是实现所需冷却性能的主要限制因素。这一发现表明,除了研究巨大的热响应之外,还必须将减少材料损失视为研究用于冷却应用的最佳 EC 制冷剂的关键目标。最后,概述了一些减少损失的策略。
· MK IV-S 后轴带测量装置(传动臂中测量轮的皮带传动 / 气弹簧 / 传感器)· 新一代计算机系统(MPC 用于测量后备箱中的数据,PPC 用于在驾驶室中显示数据)· 使用寿命超过 15 年 >> 95% 的零件由制造商生产· 曲线和跑道出口测量 >> 由于测量轮安装在后轴而不是底盘上,因此稳定可靠· 节省跑道上的时间 >> 能够进行“飞行启动”(即在行驶时开始测量)· 可靠的技术 >> 测量轮和参考轮之间使用皮带而不是链条连接· 操作和维护简便 >> 无需垂直校准· 数据信息输出以 PDF 文件格式提供,其中包含图表和 XLS 文件,其中包含详细的摩擦数据(标准)
多热效应是指在同时或依次施加或去除外部刺激的情况下,材料的温度或熵发生变化。其前提条件是材料具有多种铁性状态。但很少有报道直接测量这种效应。现在,出于这个原因,我们构建了一个测量装置,可以同时确定脉冲磁场和单轴载荷影响下的绝热温度变化。我们选择全 d 金属 Heusler 合金 Ni-Mn-Ti-Co 进行首次测试,因为它具有增强的机械性能和巨大的磁热效应和弹热效应。Ni-Mn-Ti-Co 暴露于高达 10 T 的脉冲磁场和高达 80 MPa 的单轴应力,并测量相应的绝热温度变化。利用我们的新实验工具,我们能够更好地了解多热材料并确定它们对不同刺激的交叉耦合响应。