团队使用的监测标签是高分辨率的行为记录标签,部署在南加州近海观测站 (SCORE) 的柯氏喙鲸 (Ziphius cavirostris) 和 ESA 列出的长须鲸 (Balaenoptera physalus) 身上。主要标签是 Wildlife Computers/Andrews Whale Lander 标签的新版本,称为 Lander2 标签。该标签包括 Fastloc GPS 和 3 轴加速计和磁力计(可以检测动物精细动作和方向的传感器)以及标准深度和温度传感器。所有传感器都位于一个更具流体动力学的封装内,预计可以保持连接更长时间。
1.3.6 决胜局 学校将按照上述优先顺序录取人数以内的儿童。如果在列出的任何优先类别中,所有申请者都无法获得名额,学校将优先考虑住在离学校最近的儿童。 学校将使用家庭住址和最近的开放校门之间的最短、最安全的步行路线来测量距离。为避免疑问,在学校没有确定安全步行路线的地区,将使用家庭住址和最近的开放校门之间的最短驾驶路线。 学校将仅使用 Mapinfo 系统来测量距离,以确保所有申请者机会均等。任何其他系统计算出的测量值均不予考虑。
LiDAR 传感器(光检测和测距)是一种遥感技术,它使用激光测量距离并创建周围环境的详细、准确和三维表示。LiDAR 系统发射激光脉冲,激光脉冲从物体反弹后返回所需的时间用于计算距离并创建该区域的精确地图。
B) 空间感 所有班级的孩子都会提到或使用位置术语,讨论和记录往返周围环境的旅程,并提到或使用家庭、教室和学校内的方向。一年级到六年级的孩子将讨论和记录当地熟悉的人文和自然特征的相对位置。在三年级和四年级,孩子们将能够在当地建立和使用基本罗盘点,并逐渐了解一些欧洲国家的名称和相对位置。五年级和六年级的孩子将能够在探索当地时估计和测量距离并确定基本方向。他们还将开始了解欧洲和世界一些自然和人文特征的名称和相对位置。
•将前,中间或后距离点击到绿色以查看玩具状的距离(Playslike距离图标,第10页)。•在绿色的前,中或后距离上向上或向下滑动,以查看其他数据,包括您的残障评分和类似游戏的因素。•点击地图以查看更多细节或用触摸定位(用触摸定位测量距离,第6页)。•点击地图,选择或查看上篮的位置和距离,或危险的前后(危险和上篮,第6页)。•按打开高尔夫菜单(高尔夫菜单,第5页)。当您移动到下一个孔时,手表会自动过渡以显示新的孔信息。
5. 我们用英里每小时 (mph) 来测量陆地车辆(例如汽车、自行车)的速度。在航空领域,由于我们使用 nm 来测量距离,因此速度以 nm 每小时(帆船时代称为节)为单位来测量。与陆地车辆的另一个区别是,由于飞机不在地面上,因此不能使用车轮旋转的速度来驱动速度计。当飞机在空中飞行时,我们使用一种称为空速指示器 (ASI) 的仪器来测量“动态压力”,即飞机向前运动引起的压力。我们通过测量飞机周围空气的压力(大气压力或“静压”)与皮托管中捕获的空气压力(“皮托管压力”)之间的差异来实现这一点,皮托管压力由静压和动压组成。
摘要:物体导航广泛用于目标检测。在这种系统中,通过距离测量来检测最近的物体。测量的距离和传感器的选择取决于应用类型以及周围的环境问题,如温度、湿度、雾等。对于短距离测量,使用超声波传感器。超声波传感器输出用于测量距离。计算、处理、控制和显示单元在 FPGA 上实现。Xilinx 综合工具用于在 FPGA 上实现设计。FPGA 具有更快的处理能力、低功耗,并且易于重新配置以用于必要的应用。测量的距离显示在段显示器上。关键词:FPGA 套件、超声波传感器 HC-SR04、7 段显示单元、Xilinx ISE 设计套件。
几乎每个机器人都将依靠多个传感器(包括多种类型的传感器)进行感知和本地化任务。这使机器人可以利用每个传感器的不同强度,以获得更全面的传感能力。例如,自动驾驶汽车可以同时使用激光范围和雷达来测量距离,因为在某些情况下,一种传感器可能比另一个传感器更好。作为另一个例子,轮式机器人可以使用GNSS剂量以及车轮编码器来估计位置。但是,虽然每个传感器都可以向类似目标提供数据(例如估计位置或方向)它们的感应方式可能大不相同。本章介绍了传感器融合1、2的主题,并提供了有关有效1 F. Gustafsson的算法的讨论。统计传感器融合。Studentlitteratur,2013年,第1页。 554
测试框架 UTM 可以测试材料的拉伸或压缩性能。使用机电或液压测试框架施加负载。这些机器基于变速电动机、齿轮减速系统和一个或多个可上下移动横梁的螺钉。单柱测试仪通常用于需要较低力的应用,通常最高 1,500 lbF (6.7 kN)。这些测试仪适合台式安装,可用于实验室或生产环境。双柱测试仪可用于一些低力应用,但通常指定用于较高力应用。双柱测试框架可配置为台式或落地式安装。测试框架通常由一个或两个丝杠驱动,而重型机器则由液压驱动。可提供定制测试框架,其中可以增加柱高以允许测试大样品。通常集成了测量距离、限位返回或断裂停止的控制功能。
大气发声大气发声是基于通过大气的全球导航卫星系统(GNSS)的信号。GNSS包括美国GPS,俄罗斯的Glonass和欧洲的伽利略。GPS星座由28个活跃的卫星组成,它们以20 000公里的高度绕地球绕,以1575 MHz和1228 MHz发射导航信号。在地平线上的传输卫星的掩盖过程中,信号路径的很大一部分横穿大气。与真空中的光速相比,这略微降低了无线电波的速度,显然增加了GPS卫星与接收器之间的测量距离(LEO)卫星。在信号最接近地球的点上,效果最大。由于两个卫星的相对运动,该点的高度将减小(在设置掩盖的情况下)或增加(在掩埋的情况下)。虽然当数据用于精确定位或轨道确定时,这种大气效应是错误的源