信息驱动引擎可纠正热涨落,这是麦克斯韦妖思想实验的现代实现。我们介绍了一种基于重胶体粒子的简单设计,该粒子由光学陷阱捕获并浸入水中。使用精心设计的反馈回路,我们实验性地实现了“信息棘轮”,利用有利的“向上”涨落来举起重物以抵抗重力,无需做外部功即可存储势能。通过利用简单的理论优化棘轮设计以提高性能,我们发现工作存储率和定向运动速度仅受引擎的物理参数限制:粒子的大小、棘轮弹簧的刚度、运动产生的摩擦力以及周围介质的温度。值得注意的是,由于性能会随着观察频率的增加而达到饱和,因此测量过程并不是限制因素。提取的功率和速度至少比以前报告的引擎高一个数量级。
摘要 — 过去二十年,高光谱遥感技术取得了长足进步。目前,机载和星载平台上的传感器覆盖了地球表面的大片区域,具有前所未有的光谱、空间和时间分辨率。这些特性使大量需要精细材料识别或物理参数估算的应用成为可能。这些应用往往依赖于复杂的数据分析方法。困难的根源在于高光谱数据的高维度和大数据量、光谱混合(线性和非线性)以及与测量过程相关的退化机制,如噪声和大气影响。本文介绍了一些相关的高光谱数据分析方法和算法的教程/概述,分为六个主要主题:数据融合、解混、分类、目标检测、物理参数检索和快速计算。在所有主题中,我们描述最先进的技术,提供说明性示例,并指出未来的挑战和研究方向。
量子信息科学和技术的最新发展,尤其是可编程量子计算机的构建,为我们研究量子力学的基本方面提供了新的机会。我们提出量子比特模型来模拟量子测量过程,其中量子比特的量子信息被映射到作为测量设备的量子比特集合。一个模型由单光子检测驱动,另一个由自旋测量驱动。这两个模型都可扩展以生成薛定谔猫态,并且它们相应的量子电路被明确展示。近期的量子计算机可以实现大规模模拟,而经典计算机无法有效地执行相同的任务。由于模型的可扩展性,这种模拟可以帮助探索量子测量问题中量子到经典的边界(如果存在的话)。此外,我们生成猫态的协议可能在量子计算和计量学中具有重要应用。
量子密钥分发 (QKD) 是一种使用光的量子态作为可信信使的通信方法,这样,任何对信息传输的窃听企图都会被揭示为对状态进行测量过程的底层量子物理的一部分。1-3 虽然基本协议在其假设范围内是安全的,但实际的 QKD 系统可能会因原始协议方案的不完善实现、准备和检测设备不完善,或通过侧信道将信息泄露出两个通信伙伴所谓的安全范围而表现出漏洞。4-6 已经通过技术措施和高级协议识别和解决了这类漏洞。例如,光子数分裂攻击(其中单个光子被微弱的相干脉冲近似)、7,8 特洛伊木马攻击、3,9 各种定时攻击、10-12 以及各类信息泄漏到寄生自由度中。 QKD 系统最关键的漏洞可能是针对单光子探测器的探测器致盲/假态攻击。13 实验证明,这种攻击有效
光束质量,并可以使用光电二极管捕获和分析反射。几个空间分布的微型激光器扫描周围空气中的颗粒,光电二极管测量返回光束的干涉,系统计算发现的空气颗粒的大小和数量。测量过程称为 SMI(自混合干涉)。由于测量是纯光学的,因此无需直接接触空气 - VCSEL 受到小窗格的保护。也不需要用于测量的吸入空气的风扇 - 因此传感器完全无噪音工作,并且无需清洁或维修。通过这种新的测量方法,传感器的体积可以缩小到只有几毫米,使其比所有以前的细尘传感器小 450 倍。博世 Sensortec 的 Peter Ostertag 很高兴:“别在意火柴盒了,新传感器只有火柴头那么大。”该技术使抽油烟机能够在烹饪过程中产生过多细尘时自动调节功率。或者当建筑物中的细尘传感器发出警报时启动通风系统。
马克斯·玻恩斯 (Max Borns) 的统计解释 [11] 使概率在量子理论中扮演了重要角色。他假定两个归一化的希尔伯特空间元素的内积的模平方应该解释为两个希尔伯特空间元素所表示的纯态之间的转移概率。数学形式主义并没有为这种解释提供任何理由,但实验证据迫使我们接受它。在 Birkhoffer 和 von Neumann [10] 开创了量子逻辑理论之后,各种版本的量子力学转移概率被引入该理论。大多数方法通过附加公理假定这种版本的存在 [25, 34, 35, 45]。作者早期的方法基于射影量子测量(吕德斯 - 冯诺依曼量子测量过程)或经典条件概率的扩展 [37, 38]。之前的一篇论文 [41] 采用了不同的方法。其目的是指出量子的代数起源
在本次研讨会上,我们将研究量子测量理论。首先,我们将详细描述测量量子态的过程。然后,我们将介绍弱测量的概念,它提供的有关波的信息较少,但有其他好处。在弱测量领域,我们将观察到一些奇怪的结果。调整我们对测量理论的期望非常重要。即使我们将更详细地描述测量过程,而不仅仅是陈述投影假设,量子力学的基本测量问题仍然存在。在这个理论的范围内,我们无法解释测量的投影性质、玻恩规则或波函数坍缩。量子世界和我们的经典经验之间仍然存在差距,这可以通过对量子力学的解释来解决。我们不会在本研讨会上处理这个问题,因为我们将专注于描述观察到的量子系统和测量设备之间的相互作用。这样,我们将能够研究测量对观察到的系统的影响,调节相互作用的强度,并获得必要的测量统计数据。我们将在第 4 章中看到,弱测量背后的动机不仅仅是出于无望的量子爱好者的好奇心,而是为了强大的实验应用。
摘要:近年来,运动结构 (SfM) 和多视角立体 (MVS) 算法已成功应用于安装在无人机 (UAV) 平台上的摄像机生成的立体图像,以构建 3D 模型。事实上,基于 SfM-MVS 和 UAV 生成的图像组合的方法可以实现经济高效的采集、快速自动化处理以及 3D 模型的详细和准确重建。因此,这种方法在文化遗产 (CH) 领域的表示、管理和保护中变得非常流行。因此,本综述论文讨论了无人机摄影测量在 CH 环境中的使用,重点关注图像采集技术和 3D 模型构建软件的最新趋势和最佳实践。尤其是,本文旨在强调与可用的不同平台和导航系统相关的不同图像采集和处理技术,以及分析和深化有效描述整个摄影测量过程的 3D 重建方面,为不同领域的新应用提供进一步的见解,例如结构工程以及属于 CH 领域的遗址和结构的保护和维护修复。
摘要:近年来,运动结构 (SfM) 和多视角立体 (MVS) 算法已成功应用于安装在无人机 (UAV) 平台上的摄像机生成的立体图像,以构建 3D 模型。事实上,基于 SfM-MVS 和 UAV 生成的图像组合的方法可以实现经济高效的采集、快速自动化处理以及 3D 模型的详细和准确重建。因此,这种方法在文化遗产 (CH) 领域的表示、管理和保护中变得非常流行。因此,本综述论文讨论了无人机摄影测量在 CH 环境中的使用,重点关注图像采集技术和 3D 模型构建软件的最新趋势和最佳实践。尤其是,本文旨在强调与可用的不同平台和导航系统相关的不同图像采集和处理技术,以及分析和深化有效描述整个摄影测量过程的 3D 重建方面,为不同领域的新应用提供进一步的见解,例如结构工程以及属于 CH 领域的遗址和结构的保护和维护修复。
量块手册 作者:Ted Doiron 和 John Beers 美国国家标准与技术研究所精密工程部尺寸计量组 前言 自 1926 年 Peters 和 Boyd 的开创性工作 [1] 以来,尺寸计量组及其前身美国国家标准与技术研究所 (原国家标准局) 一直致力于记录量块校准的科学。不幸的是,这些文档中的大部分都是报告和其他内部文件的形式,研究所外感兴趣的计量学家很难获得。在我们最近对校准程序进行重大修订之际,我们决定将现有的 NIST 量块校准程序文档汇编并扩展为一个文档。我们使用汇编这个词而不是编写这个词,因为所描述的大多数技术在过去 20 年中已由尺寸计量组的各位成员记录下来。不幸的是,大部分工作分散在多份文档中,自出版物撰写以来,测量过程的许多细节都发生了变化,并且存在许多覆盖范围的巨大空白。我们希望本手册汇集了之前最好的文档,并扩展了覆盖范围,以完整描述当前的量块校准过程。许多章节都基于以前的文档,因为很少有内容可以与之匹配。