5.1。一般描述和预期用途HI97771是一种自动诊断便携式光度计,从Hanna®年代作为分析仪器制造商的经验中受益。它具有高级光学系统,该系统使用发光二极管(LED)和狭窄的带干扰过滤器,该过滤器允许准确且可重复的读数。光学系统与外部灰尘,污垢和水密封。仪表使用一个独特的正锁定系统来确保每次将比色杯放置在相同位置的架中。使用CAL Check™功能,用户可以随时验证乐器的性能并应用用户校准(如有必要)。HannaInstruments®CalCheck Cuvettes由NIST可追溯标准制成。内置教程模式可以通过测量过程逐步指导用户。它包括样品制备,所需试剂和数量的所有步骤。HI97771米的测量为0.00至5.00 mg/L(ppm),总氯从0到500 mg/L(ppm)。游离氯的方法是美国EPA方法330.5,DPD色彩法的适应。总氯的方法是对水和废水检查的标准方法的适应,第20版,4500-CL。
测量对十九世纪的工程学至关重要。本文以苏格兰史蒂文森工程公司的工作为重点,探讨了工程师使测量结果可信的过程,并解释了测量作为一种产品和实践,如何为工程决策提供信息并支持对工程权威的主张。通过研究量化、测量和绘制动态河流空间的尝试,本文分析了工程经验和判断与工程师认为“相当正确”的数据生成之间的关系。虽然测量创建了一个抽象和简化的河流版本以适应预测,但这种抽象必须与真实的河流空间相联系并在其中具有意义,尽管测量实践存在公认的局限性。作为回应,工程师利用通过测量过程获得的经验来支持对权威知识的主张。这种量化和经验的结合随后被用来支持对河流的正确使用和管理的辩论的干预。本文认为,十九世纪工程中的测量具有双重功能,既能产生数据,又能提供专业知识,这对于巩固工程权威和促进工程师干预河流管理决策都具有重要意义。
这项工作对图状态(GSS)的纠缠和图连接性质进行了全面探索。使用伪图状态(PGSS)中的量子纠缠(PGSS)使用纠缠距离(ED)进行量化,这是一种最近引入的两部分纠缠的度量。此外,还提出了一种新的方法,用于使用Pauli矩阵量子相关器探测真正的GSS的基础图连接性。这些发现还揭示了对测量过程的有趣含义,证明了某些投射测量值的等效性。最后,重点放在该框架中数据分析的简单性上。这项工作有助于更深入地了解GSS的纠缠和连接性能,从而为量子信息处理和量子计算应用程序提供有价值的信息。在这项工作中不使用著名的稳定器形式主义,这是研究这种类型状态的通常首选框架。相反,这种方法仅基于期望值,量子相关性和投射测量的概念,这些概念具有非常直观和基本的量子理论工具。
需要在真空中产生原子束并理解定向量子化,即空间中原子磁矩的排列以及这种排列的有针对性的改变。这一领域的先驱是奥托·斯特恩 (Otto Stern),他是法兰克福大学和汉堡大学的教授(自 1923 年起)[2]。实际上,每个物理学家都会遇到与沃尔特·格拉赫(Walter Gerlach)在《原子物理学导论》中一起进行的“斯特恩-格拉赫实验”[2]。这个实验的解释今天尚未完成,因为它涉及物理测量过程的基本问题 [3, 4] 。实验结果一致得出,原子在外磁场中的磁矩μ不呈现任意方向,而仅呈现一定的值。在不均匀磁场中具有磁矩 µ 的原子上的力也呈现离散值。在一次历史实验中,斯特恩和格拉赫观察到银原子束在通过不均匀磁场进行状态选择后,空间分裂成两个部分光束。Isidor Isaac Rabi,用今天的话来说,是汉堡斯特恩研究所的“博士后”,他扩展了测量装置,包括一个电磁波可以辐射到原子上的相互作用区域,以及第二个区域磁性
简单的光学技术。但是,EBSD 的自动化特性意味着它可以提供更多信息,而不受个人操作员的技能和主观性的影响,例如在自动图像分析的样品照明设置中。尽管 EBSD 可以自动化晶粒尺寸测量过程,但在样品制备、操作条件选择和采集后降噪的使用方面仍需谨慎。报告了这些对测量晶粒尺寸影响的实际示例,并将 EBSD 结果与光学获得的结果进行了比较,突出了 EBSD 在检测较小晶粒和检测孪晶边界方面的更高分辨率的影响。它讨论了报告结果的方式,并将结果与晶粒尺寸分布的理论预测进行了比较。这项工作是在更广泛的背景下进行的,需要量化微观结构异质性,以验证工程合金热变形的变形模型,该模型是与谢菲尔德大学和威尔士大学(斯旺西)联合项目的一部分。K P Mingard、E G Bennett、A J Ive 和 B Roebuck 2006 年 1 月
量子算法可以潜在地突破计算困难问题的界限。光束传播算法是现代光学的基石之一,它有助于计算具有特定色散关系的波在时间和空间中如何传播。该算法通过傅里叶变换、与传递函数相乘以及随后的反变换来求解波传播方程。该传递函数由相应的色散关系确定,通常可以展开为多项式。在自由空间中的近轴波传播或皮秒脉冲传播的情况下,该展开式可以在二次项后截断。波传播的经典解需要 O ( NlogN ) 个计算步骤,其中 N 是波函数离散化的点数。在这里,我们表明传播可以作为具有 O ( ( logN ) 2 ) 个单控相位门的量子算法来执行,表明计算复杂度呈指数级降低。我们在此演示了这种量子光束传播方法 (QBPM),并在双缝实验和高斯光束传播的一维和二维系统中进行了这种传播。我们强调了选择合适的可观测量的重要性,以便在量子测量过程的统计性质下保持量子优势,这会导致经典解决方案中不存在的采样误差。
摘要— 开发了一种获取传感器测量过程的贝叶斯网络 (BN) 表示的方法,以便从统一的角度处理传感器融合和管理问题。传感器数据中嵌入的不确定性、可靠性和因果信息用于构建传感器的 BN 模型。该方法用于为人道主义排雷建模探地雷达、电磁感应和红外传感器。结构和参数学习算法用于在 BN 模型中编码地雷特征、传感器测量值和环境条件之间的关系。推理用于在存在异质土壤和不同环境条件的情况下估计目标特征。开发了一种在 BN 模型上运行的多传感器融合技术,以利用传感器测量值的互补性。通过相同的方法,可以获得 BN 分类器来估计目标类型。 BN 模型和分类器还计算所谓的置信度,以量化与特征估计和分类决策相关的不确定性。通过实施这些 BN 工具来检测和分类具有不同形状、大小、深度和金属含量特征的金属和塑料地雷,证明了该方法的有效性。通过 BN 融合,特征估计的准确性相对于单传感器测量提高了 64%
我们研究量子信息和量子计算中出现的稳定器形式主义的数学、物理和计算方面。给出了泡利可观测量的测量过程及其算法。结果表明,要检测真正的纠缠,我们需要一整套稳定器生成器,并且稳定器见证比 GHZ(Greenberger-Horne-Zeilinger)见证更粗糙。我们讨论了稳定器代码,并从给定的线性代码构造了一个稳定器代码。我们还讨论了量子纠错、错误恢复标准和综合征提取。建立了稳定器形式的辛结构,并证明了任何稳定器代码都酉等价于一个平凡代码。通过获得相应的稳定器生成器,可以识别图代码作为稳定器代码的结构。获得了可嵌入稳定器代码在格中的距离。我们讨论了 Knill-Gottesman 定理、表表示和框架表示。利用稳定矩阵计算稳定门的模拟运行时间,并给出全局相位更新算法。给出了量子信道分解为稳定信道的过程。讨论了容量实现码,从而得到量子擦除信道的容量。最后,讨论了阴影层析成像问题,并给出了构造经典阴影的算法。
在社会技术系统中,社会现象的测量无处不在,这是不可避免的。这不仅仅是一个学术观点:当我们声称要测量的东西和我们实际测量的东西在测量过程中不匹配时,就会出现与公平相关的危害。然而,测量过程——社会、文化和政治价值观隐含地编码在社会技术系统中——几乎总是被掩盖。此外,这个模糊的过程是重要的治理决策被编码的地方:关于哪些系统是公平的,哪些人属于哪些类别,等等。然后,我们可以使用测量语言以及结构有效性和可靠性工具来揭示隐藏的治理决策。特别是,我们强调了两种类型的结构有效性,即内容有效性和结果有效性,它们有助于引出和描述社会类别的测量、社会建构和执行之间的反馈循环。然后,我们在负责任的人工智能治理背景下探讨公平性、稳健性和责任的构造。总之,这些观点有助于我们揭示测量如何在社会技术系统中充当隐藏的治理过程。将测量理解为治理有助于更深入地了解人工智能中已经发生的治理过程(无论是负责任的还是其他的),从而揭示更有效的干预途径。
近几年来,测量系统中软件的使用急剧增加,使许多设备更易于使用、更可靠、更准确。然而,软件中隐藏的复杂性是未检测到错误的潜在来源。此类系统的用户和供应商都必须意识到所涉及的风险并采取适当的预防措施。此类风险可能对测量系统的某些用途产生安全隐患。本指南参考通用安全标准 IEC 61508 处理安全隐患。警告读者,安全是一个系统问题,这意味着本指南(仅处理软件)只能提供安全系统中测量软件验证的部分解决方案。在本指南中,我们考虑了在测量系统中使用软件的影响。此类软件可以嵌入测量系统中,由系统供应商提供但与测量系统分开,也可以单独开发以与一种或多种类型的测量系统配合使用。关键问题是保持测量过程的完整性。尽管测量系统的用户与测量系统供应商的观点不同,但仅提供了一份指南。这样做的原因是,用户需要了解供应商可以合理提供什么来证明测量的完整性。同样,供应商也需要意识到合理的担忧