本文介绍了凯伦·巴拉德(Karen Barad)的哲学现实主义哲学框架,作为定量心理学和测量的科学观点的替代哲学。构成现实主义通过提出对共同建设我们世界的物质 - 识别实践的伦理 - 小径 - 主题论理解,对研究对象,测量过程和结果,因果关系以及研究人员的责任进行了重新思考。定量心理学科学观点的当代,规范的潜在哲学涉及实体现实主义,现有生存与认识论方法之间的差异,完全的因果关系和确定论。因此,研究人员对研究对象的特征不承担任何责任。本文介绍了对拒绝实体现实主义的理论现实主义及其对现象的特殊理解,对现象的纠缠和认知方法的特殊理解以及研究人员在共同创造结果中的作用。对因果关系概念的重新加工意味着实现新出现的可能性。随后,本文解决了在定量心理学中运用构成现实主义的四个后果。(1)如果在每种现象中都有不确定性,研究人员不会寻找一个真实分数,而是具有实现潜力,这对比较和复制具有影响。(2)如果配置是苯丙胺中事物的一部分,则上下文不能作为第三个变量来工作;相反,所有“零件”都是共同创造者。必须在复制中考虑这种纠缠,而不是试图消除其影响。(3)合理的现实主义涵盖了研究人员有责任证明在研究项目中做出的决定并澄清道德的责任。(4)总体而言,通过提出新的问题并以不同的方式解释研究成果来改变研究的努力。进一步的方向指出了诸如方法论问题和心理学中的必要性等具体任务,以进一步详细说明巴拉德(Barad)发起的概念化。
将以下情况作为指导示例:我们想检查某些多孔介质的样本,例如开放式沥青混凝土,并使用微型X射线计算机断层扫描(X-RCT)扫描来检测材料中的微断裂[18]。测量过程可以通过以下意义通过ra trans形对数学建模:当X射线在线上通过对象行进时,该线路上的材料将使它减弱。这种衰减取决于我们要重建材料的密度。在数学上,在检测器中测得的信号现在可以表示为ra换变换,即所谓的X射线函数的X射线变换。因此,要重建断裂图像,必须将用于X射线变换反转的算法应用于观察到的数据。除其他外,算法的选择取决于所测量的数据和模型的属性,例如所使用的坐标系。这些元数据通常不会系统地存储,从而违反了公平原则[28],因为无法保证可重复使用性。因此,有兴趣应用X-RCT(可能在考古学或生物医学等其他研究领域)的研究人员不能简单地重复使用,但可能必须重新验证文献搜索算法,软件实现和参数。由于其来自工程的起源,来自不同领域的数据与基本的一般数学概念没有链接。因此,尽管基本的数学模型可能完全相同,但应用程序之间的协同作用并未利用。1应该被捡起。创建知识图(kg),包括模型,算法,相关文献和进一步的元数据,这是本文的范围。通常,在典型的建模仿真 - 优化(MSO)工作流程中产生的问题如图所示。这些包括模型的实验,解决方案算法的可用性,输入或观察数据或模型有效性。通常,回答这些问题需要大量的努力,如果所需的信息可访问并删除 -
量子力学的形式基于三个基本概念:状态、时间演化和测量。一般物理系统的状态描述了它的所有属性,或者至少是某些物理描述中我们关心的所有属性。时间演化的形式描述了系统在处于某个初始状态之后随时间如何演化。为了计算系统的时间演化,我们通常需要知道其组成部分如何相互作用。在经典物理学中,我们现在就完成了,但在量子物理学中,测量过程起着特殊的作用。形式上,测量与时间演化在两个方面有区别:虽然量子力学中的时间演化将是可逆的,即某一时刻的状态唯一地决定了之前时刻的状态,但对于状态经历不可逆变化的测量而言,情况并非如此。时间演化也是确定性的,即所有时刻的状态都由之前时刻的状态唯一决定。然而,测量从根本上讲是概率性的,即,随机测量结果将以由测量和被测状态确定的概率分布被观察到。调和这两种相互冲突的现实描述的问题称为测量问题。至今,它仍然是量子力学基础上的一个悬而未决的问题。虽然量子理论的奇怪预测已经在实验中无数次地重复,并且精度很高,但我们距离解决这个问题还很远。在通往量子力学一般形式主义的道路上,我们将从封闭量子系统的描述开始。当量子系统不与任何其他量子系统相互作用时,它被称为封闭的。从历史上看,这是量子理论的起点,但后来人们发现这种描述并不令人满意:即使在控制良好的实验室环境中,量子系统也会与环境相互作用(例如,通过电流、放射性背景或宇宙辐射的磁场),因此不能被认为是封闭的。原则上,我们可以将整个宇宙视为一个封闭的量子系统,但这将非常复杂。相反,我们将开发开放量子系统的一般形式,即可能与环境相互作用的量子系统,其中包括封闭量子系统作为特例。这将导致量子信息理论和整个课程中普遍使用的一般形式。
量子信息处理[1]符合与量子计算和通信相关的应用中的纳米科学。超导设备[2,3]利用约瑟夫森行为作为基石[4-6]通常是许多这些应用的基础。此外,至少在原则上,非抗渗透率,金属或半导体量子环[7,8]可以作为量子的物理实现[9]。有效的可控性[10-12]和针对破坏性的鲁棒性是所有希望实现的设备组共有的共同特征。在材料科学和量子光学的边界工作的纳米和中尺度上运行的量子设备也可以用作高度敏感的工具,以检测量子系统的微妙和非经典特征,并以纠缠[14,15]为量子[14,15]作为量子通信和量子的量子和量子的测度和量子测量过程[14,15]。在纳米尺度上存在的大多数特征特征中,量子环(持久)电流(超导和金属[8])在多重连接样品的非平凡拓扑中流动(超导和金属[8])。纳米流中流的特性是由用于构造的材料的细节以及各种噪声源的材料的细节[24],使其现实且可信的描述高度非平凡[25]。[41]假定的外部字段近似[36]。参考文献中引入的外部范围近似。有许多研究将微观描述[26]的多粒子低维纳米系统用于运输在汉密尔顿描述中编码的电子的属性,包括粒子间相互作用[27-30]以及纳米派和各种噪声源的运输特性之间的高度非平底关系影响。在超导和非渗透导圈中存在非经典磁性弹药的情况下,持续电流的特性反映了许多磁性磁通的磁性磁性验证,从而将样品踩踏并修饰电子相。经过精心制备的非经典电磁场适用于量子信息处理[31 - 35],显示用于修改纳米系统中流动的电流的性质[20,36 - 40](Ref。[36]是一种非常有用且舒适的均值领域方法,忽略了纳米vice的后侵入属性
土壤是一个复杂而动态的生物系统,而且直到 2003 年,仍然很难确定土壤中微生物群落的组成。我们在确定微生物介导的反应方面也受到限制,因为目前用于确定整个代谢过程(如呼吸)或特定酶活性(如脲酶、蛋白酶和磷酸单酯酶活性)的总体速率的检测方法无法识别直接参与测量过程的微生物物种。微生物多样性与土壤功能之间的联系所带来的核心问题是了解遗传多样性与群落结构之间的关系以及群落结构与功能之间的关系。更好地了解微生物多样性与土壤功能之间的关系不仅需要使用更准确的检测方法对从土壤中提取的 DNA 和 RNA 进行分类和功能表征,还需要使用高分辨率技术来检测土壤基质中非活性和活性微生物细胞。土壤似乎具有功能冗余的特点;例如,微生物多样性与有机物分解之间不存在任何关系。一般来说,任何物种群的减少对土壤的整体过程影响不大,因为其他微生物可以承担其功能。确定土壤中微生物群落的组成对于更好地量化营养转化来说并不是必要的。基于库中系统的划分和连接这些库的通量的测量的整体方法是最有效的。通过熏蒸技术测定微生物 C、N、P 和 S 含量可以更好地量化土壤中的营养动态。然而,进一步的进展需要确定新的库,例如活性微生物生物量,也需要使用分子技术。最近,研究人员通过密度梯度离心分离了 13 C 和 12 C DNA,它们都是从用 13 C 源处理的土壤中提取的。这种技术应该允许我们通过将标记 DNA 和总 DNA 之间的比率乘以土壤中微生物生物量 C 含量来计算活性微生物 C 库。此外,13 C-DNA的分类学和功能表征使我们能够更准确地了解土壤中添加的C底物对微生物群落组成的变化的影响。
密码学的悠久历史[1-6]。在20世纪之前,Cryptog-raphy被视为一种主要依靠个人技能构建或破坏代码的艺术,而无需进行适当的理论研究[7]。专注于信息的态度,众所周知,经典加密术可确保在不同情况下或间谍之间或间谍之间的不同情况下进行沟通。经典密码学的重要代表是换位密码,它重新排列了信息以隐藏原始含义。在20世纪初期,在哈里·奈奎斯特(Harry Nyquist),拉尔夫·哈特利(Ralph Hartley)和克劳德·香农(Claude Shannon)建立了信息理论之后,对加密 - 拉皮(Cryptog-raphy)的研究开始利用数学工具。密码学也成为工程的一个分支,尤其是在使用计算机之后,允许数据加密。现代密码学的两个主要方案包括对称(私钥)加密章节,例如,数据加密标准(DES)[14]和高级加密标准(AES)[15]和非对称(公共键)密码学,例如RSA AlgorithM [16]。对称密码学取决于通信方(Alice和Bob)之间的共享密钥,而在非对称加密术中,加密密钥与解密密钥不同。通常,对称加密图比不对称的密码学更有效,具有更简洁的设计,但是在共享键的安全分布方面,它具有困难。另一方面,使用公共密钥和私钥进行加密和解密的非对称加密术,分别依赖于称为单向函数的数学问题,这些函数从一个方向(公共钥匙)[17] [17] [17] [17] [17],并且在如今更广泛地用于避免在Symetric Crysetric Crystric Crypectrics中避免使用安全级别的Safe Safe Page of Secy safe Safe Pression。然而,随着量子计算的快速开发及其在解决常规单向函数方面的潜力,可以使用Shor的算法[20]和Grover's算法[21]中断当前的加密系统[19] [19];因此,在信息安全的新时代,QKD现在变得越来越重要。与当今使用的非对称加密术不同,QKD基于对称密码学,保证了用量子力学定律确保秘密键的安全分布,即测量过程通常会扰乱
摘要 自动化的增加已经影响到了驾驶舱的工作。单一欧洲天空 ATM 研究 (SESAR) 旨在提高欧洲 ATM 系统的性能,它将自动化视为提高未来系统性能的关键推动因素。航空系统是一个复杂的大型社会技术系统。该系统受到所有系统级别的内部和外部压力源的影响。在这个系统的工作流程层面上,驾驶舱代表了一个联合认知系统。当事故或事件确实发生时,人们普遍认识到,要超越机组人员错误的标签来了解发生了什么。随着飞行安全性的提高,需要从中吸取教训的事件和事故越来越少,这增加了查看正常运营数据以进行改进的重要性。机组人员培训环境越来越依赖于收集到的有关单个航空公司的飞行运营环境和绩效的数据。通过航空公司的绩效测量系统,收集了大量的绩效数据。然而,这些数据的格式并不适用于复杂的社会技术或联合认知系统的研究。此外,监管、财务和其他限制限制了航空公司对收集数据的使用以及他们进行培训的方式。本研究的目的是增加对高度自动化动态环境下机组人员的培训内容和学习机会与航空公司绩效监测和测量过程的关系的了解。在此背景下,确定了支持机组人员操作高度自动化飞机的障碍和改进潜力。本研究采用混合方法来收集和分析数据。整体研究方法是按照应用研究传统进行的。本论文中的经验数据主要基于两个研究项目,HILAS 和 Brantare,这两个项目都明确地以参与组织的知识生成和学习为目标。基于 Rasmussen 的动态社会技术系统模型,感兴趣的航空系统范围从“单一欧洲天空”到监管机构、国家立法、飞行运营、培训和驾驶舱工作以及航空公司的政治和财务压力。从这个全面的范围得出的结论依赖于作者在航空业 30 年左右的经验中获得的领域知识。结果基于以下方法:1)使用 Rasmussen 的风险管理社会技术系统模型作为框架进行系统分析,主要从机组人员及其自动化工作环境的角度描述航空系统,2)采访飞行员,3)与飞行员和安全办公室工作人员组进行研讨会,4)尝试实施拟议的数据使用方法和 5)收集飞行运行数据。确定了使用绩效数据进行知识和学习改进的几个障碍。航空公司监控系统并不理想,特别是
摘要:热发光剂量计(TLD)由于其出色的特性,例如高灵敏度,小尺寸和测量低剂量的辐射剂量,因此广泛用于辐射剂量测定法。本综述着重于TLD材料的结构特性及其制备,应用和适应性。评论涵盖了各种类型的TLD材料,晶体结构和特性,包括能量响应和褪色特征。详细讨论了用于制备TLD材料的不同方法,例如固态合成,溶胶 - 凝胶合成和溶液生长方法。审查还包括对TLD的各种应用,包括医疗,环境和工业辐射剂量法的详细讨论。审查了有关TLD的广泛信息,并且可以使用天然和人工TL信号来完成对人类和其他目的利用率的TL剂量测定潜力的明显影响,例如矿物质,石油和天然气资源调查。有关TL测量过程需求和对复合TL剂量测定潜力显着影响的TL特征的信息。最后,审查结束了结论,以强调TLD材料对不同剂量测定应用的适应性及其将来的潜在用途。doi:https://dx.doi.org/10.4314/jasem.v28i4.13 Open Access策略:Jasem发表的所有文章都是Open-Access文章,可以免费下载,复制,复制,重新分发,重新分发,重新分发,翻译,翻译和阅读。版权策略:©2024。(2024)。J. Appl。SCI。SCI。作者保留了版权和授予JASEM的首次出版物的权利,同时在创意共享署名4.0 International(CC-By-4.0)许可下获得许可。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Efenji,G。I; Iskandar,S。M; Yusof,N。N; Rabba,J。a; Mustapha,O。I; Fadhirul,I。M; Umar,S。A; Kamgba,F。A; Ushie,P。O; Munirah,J; Thair,H。K; Nabasu,S。E; Hayder,S。NOke,A O.热发光剂量材料,制备,应用和适应性的结构特性:系统评价。环境。管理。28(4)1129- 1150日期:收到:2024年1月22日;修订:2024年2月29日;接受:2024年3月23日发布:2024年4月29日关键字:剂量计;荷兰物理学家Nicolas Steno在1663年首次观察到辐射,热发光,热发光应用,他们注意到
纳米结构中的时间依赖性现象对理解和控制其动态行为的兴趣越来越大。应用程序之一是量子计算,其中可以通过以可编程方式操纵粒子(Qubits)来以平行方式进行某种信息处理[1,2]。在某些物理系统中已成功证明了各种量子算法[3],并且在整合实用量子计算机所需的大量Qubits方面已经取得了进展,尤其是在SolidStatesystateSystateSystems中[4-9]。尽管跨性量表computermayrequire的巨大研究活动,但量子信息研究已经成功,因为提供了一种通用语言来与跨学科研究人员进行交流。量子型cannowbediscussedintermsofquantuminenformination Theory,它促进了物理学家,化学家,数学家和量子工程师之间的讨论。通常,任何将初始状态(密度算子)更改为最终状态的量子过程都可以通过完全阳性的痕量保护映射来描述[1]。对映射的知识用于定义量子信息过程。相同的映射提供了无脑摄取的iNteractractions。Quantumcomputation isbasedonanassemblyofunitaryoperations, whichcanbedecomposedintosomefundamental unitary operations on one- or two- qubit subsystems.因此,问题可以简化为几种单一操作员。实际上,现实的操作受到与量子系统耦合的环境的影响和降级,因此映射成为一个非整体量子过程[10]。降低系统相干性的两个重要量子过程是耗散的,其中量子系统的能量与环境交换,并进行dephasing,其中量子系统的相位由环境随机化。前者通常以纵向松弛时间(T 1)为特征,而后者则以横向松弛时间(T 2)为特征。此外,在与测量设备耦合下,测量过程也可以视为量子过程。量子计算需要一组完整的量子过程,以初始化所有量子位,执行一个和双Quit的单一操作,测量每个量子状态并避免出现非单一操作的错误[11]。纳米规模的固态设备中的量子动力学对于控制具有可编程量子过程序列的定制结构中的某些单个量子具有吸引力。具有约瑟夫森连接的超导电路成功证明了一个和两Q量的操作,具有高度的相干性[12,13]。可以通过设计设备参数和适当的脉冲序列来很好地与环境隔离。另一个系统是半导体量子点(QD),它提供可以用外部电压控制的人工电子状态。由于可以在半导体装置中设计和实际形成原子样电子状态,因此QD通常称为人工原子[14-17]。电子状态的高可控性可用于研究人工量子系统的动态行为以及量子计算系统的动态行为。有两个主要选择量子基础:单个QD中的自由度自由度和双量子点(DQD)中的电荷(轨道)自由度。在本文中,我们将回顾一些有关QD中的旋转和充电量子的研究,这些研究与量子信息处理和实际设备背后的物理现象有关。