vs 1。泰米尔纳德邦发电和分销公司有限公司(Tangedco)由其主席兼董事总经理10楼144,Anna Salai Chennai - 600 002。2。董事财务泰米尔纳德邦一代和分销公司有限公司144,安娜·萨莱,钦奈 - 600 002。3。监督工程师Palladamelectricity分销圈Tangedco,Palladam。4。监督工程师Tirunelvelielectrics分发圈Tangedco,Tirunelveli。…。接地thirun.kumanan和thiru.A.P.Venkatachalapathy,Tangedco的常设顾问
推荐采用市售商品化的DNA提取纯化试剂盒。如使用CTAB法提取DNA所需试剂如下: a) 乙二胺四乙酸二钠(Na 2 EDTA,C 10 H 14 N 2 O 8 Na 2 ·2H 2 O)。 b) 氢氧化钠(NaOH)。 c) EDTA 溶液:ρ(EDTA)=0.02 mol/L:称取5.8448 g EDTA 溶于适量超纯水中,NaOH 固体调节pH 至8.0,定容至1000 mL,121℃灭菌18 min,冷却后常温保存。 d) 三羟甲基氨基甲烷(Tris,C 4 H 11 NO 3 )。 e) 浓盐酸:ρ(HCl)=1.19 g/mL。 f) Tris-HCl 溶液:ρ(Tris-HCl)=0.1 mol/L:称取15.76 g Tris-HCl 溶于适量超纯水中,浓盐酸调pH 至8.0,定容至1000 mL,121℃灭菌18 min,冷却后常温保存。 g) 十六烷基三甲基溴化铵(CTAB)。 h) 氯化钠(NaCl)。 i) CTAB 提取液:称取4 g CTAB 和16.38 g NaCl,分别溶于适量超纯水中,加入0.02 mol/L EDTA 溶 液(5.3 c)8 mL 和0.1 mol/L Tris-HCl 溶液(5.3 f)20 mL,定容至200 mL,121℃灭菌18 min, 冷却后常温保存。 j) Tris 饱和酚(pH=8.0)。 k) 三氯甲烷(CHC l3 )。 l) 异戊醇(C 5 H1 2O )。 m) 酚氯仿:Tris 饱和酚、氯仿和异戊醇按25:24:1 体积比配制。 n) 乙酸铵(CH 3 COONH 4 )。 o) 乙酸铵溶液,ρ(CH3COONH4)=7.5 mol/L:称取5.78 g 乙酸铵溶于10 mL 超纯水中。 p) 乙酸钠(CH 3 COONa·3H 2 O)。 q) 乙酸钠溶液,ρ(CH 3 COONa)=3 mol/L:称取102.06 g 乙酸钠溶于适量超纯水中,冰醋酸调节pH 至5.2,定容至250 mL,121 ℃灭菌18 min; r) 无水乙醇(C 2 H 6 O)。 s) 冰乙酸(C 2 H 4 O 2 )。 t) 蛋白酶K:400 U/mL。 u) 超纯水:经121 ℃,0.1 MPa 灭菌30 min,无细菌无DNA 酶。
沃特福德市和县议会开始为特拉莫尔准备地方计划(LAP)。这圈的目的是制定一项综合策略,以在圈层到2029年的一生中进行适当的计划和可持续发展。圈将结合一个空间框架,用于指导Tramore的运输,再生,遗产,社会和社区基础设施/便利设施以及自然/文化资产的未来发展。圈速将基于沃特福德市和县发展计划的2022 - 2028年,尤其是愿景,战略成果,土地使用分区目标,住房策略和其他基于开发计划的战略。换句话说,圈圈将在开发计划的策略上局部重点。规划立法要求为所有人口超过5,000人的城镇做好准备。在2016年,特拉莫尔人口为10,381,而发展计划核心战略设想到2028年人口增加到11,549。人口普查2022年,沃特福德(Waterford)的人口增长了10.9%。圈速目前处于预入路公共咨询的阶段,随后将准备和出版一圈草案。如果您对Tramore的发展感兴趣,并希望为其可持续未来做出贡献,请在2023年3月7日午夜之前通过我们的咨询门户向沃特福德市和县议会提交。
扑热息痛✓PKA(酸解离常数)ː–•弱酸和弱碱基的水溶性由化合物的PKA和培养基的pH值控制。•pH和PKA•具有pH或PKA值后,您就会了解有关溶液的某些知识及其与其他溶液的比较:•pH越低,氢离子的浓度越高[H +]。•PKA越低,酸越强,捐赠质子的能力就越大。•pH取决于溶液的浓度。这很重要,因为它意味着弱酸实际上可以比稀释的强酸要低。例如,浓醋(乙酸,弱酸)的pH值比稀释液(浓酸)的pH值低。•另一方面,每种类型的分子的PKA值是恒定的。它不受浓度影响。•即使是化学物质,通常被认为是碱也可以具有PKA值,因为术语“酸”和“碱”只是指物种是否会放弃质子(酸)或去除它们(碱)。例如,如果您具有13个PKA的基础y,它将接受质子并形成YH,但是当pH超过13时,YH将被质子化并变为Y。由于y在pH值大于中性水的pH值(7)的pH值中去除质子,因此被认为是碱。
摘要:对从南干区和卡纳塔克邦过渡带收集的根际和非裂圈土壤进行了研究。分析了这些土壤的微生物种群和酶活性。红色沙质壤土是该区域中发现的主要土壤类型。在过渡区的草际,微生物种群最高,在南方干燥区与凉鞋根际相当。细菌种群更多地在与草根际相当的凉鞋根际中。百分比的菌根定殖在凉鞋根际中最高。但是,在两种情况下,草中的定植与凉鞋相当。菌根孢子种群在凉鞋根圈中更多,在非河流圈区域中最少。碱性磷化酶活性遵循南方干燥区土壤的趋势相同的趋势,而在过渡区的情况下,这种根源的草的活性或多或少相似。
在过去的几十年中,抗生素耐药基因的传播对人类健康构成了重大威胁。尽管植物层代表了至关重要的微生物库,但对人类干扰较少的自然栖息地中ARG的概况和驱动因素知之甚少。为了最大程度地减少环境因素的影响,我们在这里收集了从初级植被继承序列的早期,中和晚期阶段收集的叶片样品,以研究植物层在自然栖息地中如何发展。拟层gr。细菌 - 养分和叶片营养素含量,以评估其对植物圈args的贡献。总共确定了151个独特的ARG,涵盖了几乎所有公认的主要抗生素类别。我们进一步发现,由于植物圈的波动栖息地和植物个体的特定选择效应,在植物群落继承过程中存在一些随机和核心集。由于植物群落继承过程中植物层细菌的多样性,综合性的复杂性和叶片养分含量的减少,Arg的丰度大大减少。虽然土壤和落叶之间的紧密联系导致叶子中的arg丰度比新鲜的叶子更高。总而言之,我们的研究表明,植物圈在自然环境中拥有广泛的ARG。这些植物层args由各种环境因素驱动,包括植物群落组成,宿主叶特性和植物圈微生物组。