锂(Li)次要来源的供应(例如电池)将在减轻初级生产(盐水和矿物质)的需求方面发挥关键作用。要实现欧盟施加的电动汽车(EV)LIBINT电池(EV)LIBS LIBS(LIBS)的雄心勃勃的回收目标,必须以加速的速度开发创新的回收过程。已经开发了直接锂提取(DLE)方法来从盐水中产生LI。在此,我们评估了各种DLE技术的应用,从回收电动汽车流中提取LI。已经映射了几种DLE方法的技术方面和合适的初始溶质浓度范围,即绘制了溶剂提取,离子交换树脂,吸附剂,膜和电化学离子泵送。之后,通过估计LI回收率和损失,通过干燥和湿碎碎屑的不同组合选择了EV LIB回收过程的最佳预处理途径,然后是阳极分离的泡沫浮选。焦化整个细胞/模块,然后发现干燥和浮选是最理想的过程,可以最大程度地减少在预处理期间LI损失。此外,为下游水膜铝过程的浓度,组成和流量的估计估计是为了识别可以使用DLE的含Li的流,并且适当的技术已经被高照明。DLE的掺入有可能在回收过程中最大程度地减少LI损失。然而,可能需要各种DLE方法以不同的步骤恢复LI,并具有纳米滤过和反渗透,选择性离子 - 交换树脂和溶剂提取是最有希望的选择。
雪松是一种独特的松树,以其木油而闻名。其传统治疗用途主要是抗菌和抗炎。本研究旨在调查从碎木中提取的雪松精油 (CDEO) 的抗菌特性。体外和原位评估了 CDEO 对抗革兰氏阴性 (G - ) 细菌的抗菌活性,其中包括铜绿假单胞菌 CCM 1595、肠道沙门氏菌肠道亚种 CCM 3807 和革兰氏阳性 (G + ) 细菌小肠结肠炎耶尔森氏菌 CCM 5671。单核细胞增生李斯特菌 CCM 4699、金黄色葡萄球菌金黄色葡萄球菌亚种 CCM 2461 和链球菌 CCM 4043。纸片扩散法最佳抑菌范围为4.67~9.67 mm,最低抑菌浓度范围为1.48~5.44 mg.mL -1 。对金黄色葡萄球菌和单核细胞增生李斯特菌的抑菌效果最明显。所用气相在较低的CDEO浓度62.5 µg.L -1下对猕猴桃模型中的铜绿假单胞菌和香蕉模型中的单核细胞增生李斯特菌表现出最佳抑菌效果,在较高的CDEO浓度500 µg.L -1下对马铃薯模型中的铜绿假单胞菌和黄瓜模型中的小肠结肠炎耶尔森菌表现出最佳抑菌效果。CDEO对蔬菜水果模型上的细菌表现出良好的抑菌效果,可能成为蔬菜水果储藏的新型防腐剂。
摘要 本文介绍了一种比色检测唾液 α-淀粉酶的方法,该酶是自主神经系统 (ANS) 活动的潜在生物标志物之一,可用于评估疲劳。利用 α-淀粉酶裂解多糖 α 键的能力来开发比色测定法。在所提出的方法中,2-氯-4-硝基苯基-α-D-麦芽三糖苷作为底物,在被唾液 α-淀粉酶裂解后释放出有色副产物。引入麦芽糖作为非竞争性抑制剂可在生理相关浓度范围 (20-500 μ g/mL) 内产生理想的线性响应,检测限 (LOD) 为 8 μ g/mL(在水溶液中)。随后优化底物和非竞争性抑制剂的浓度,以进行唾液 α-淀粉酶的比色检测。提出了一种简便的纸基“试纸”检测方法,用于分析人类唾液样本,唾液成分的干扰很小。所提出的检测方法快速、特异性强且易于实施,可用于比色检测唾液 α-淀粉酶 20-500 μ g/mL 之间。互补的 RGB(红、绿、蓝成分)分析 17 提供定量检测,LOD 为 11 μ g/mL。这两种检测格式以 Phadebas 18 测试为基准,Phadebas 18 测试是一种最先进的 α-淀粉酶分光光度检测方法。所报告的纸基方法 19 具有很高的潜力,可用于评估 ANS 对应激源的反应改变,可能在疲劳评估和监测疲劳发作方面有应用。21
背景:他克莫司(TAC)对特发性膜肾病(IMN)患者有益。它的治疗浓度范围狭窄,许多因素影响了TAC血液浓度。CYP3A5是TAC Meta-Bolism中最重要的酶。这项研究的目的是分析CYP3A5基因多态性对IMN患者TAC的效率和安全性的影响。患者:IMN接受口服TAC的患者(0.05 - 0.075mg/kg/day)与2016年3月至2018年10月的泼尼松(0.5mg/kg/day)相结合。在基线和治疗24周内收集了临床特征,治疗药物和不良反应的数据。根据不同的CYP3A5遗传多态性,将患者分为两组。分析了两组之间的效率和副作用的显着差异。结果:总共76例完成随访的患者被分为CYP3A5非压力机(CYP3A5*3/*3)组和CYP3A5 Exprancer(CYP3A5*1/*3)组。观察到CYP3A5表型与TAC代谢之间的显着关联。总共43例病例患者表现出不良反应。CYP3A5非XPResser组的感染率(21.95%)明显高于CYP3A5 Expresser组的率(5.71%)。血液浓度和C 0 /D水平是通过逻辑回归分析的不良事件的风险因素。研究组之间在效率方面没有统计差异。结论:我们的结果表明,CYP3A5多态性在克莫司治疗IMN中具有重要的指导作用。CYP3A5 Expanders需要更高的每日TAC才能达到目标药物浓度,但副作用较少。CYP3A5遗传多态性可能用于TAC剂量调整,以优化IMN患者的治疗。关键字:CYP3A5多态性,特发性膜肾病,他克莫司,副作用
这项工作的目的是用固定的n-氯酰胺基团体评估聚合物材料的抗菌活性,以针对多种耐药的常见微生物菌株,并确定这些材料对微生物渗透的耐药性。材料和方法:所研究的样品是苯乙烯与divinylbenzene的共聚物,形式是主纤维和非织造织物,具有各种结构的固定的N-氯二酰胺基团。微生物的医院菌株已从临床材料中分离出来;它们的抗生素灵敏度已通过Kirby-Bauer方法确定。琼脂分解方法确定聚合物的抗菌活性。通过膜滤过方法确定了非织造织物样品的微生物渗透。结果:聚合物样品已与Na-和H形式中的固定的N-氯二酰胺基合成,以及氯浓度范围为3.7–12.5%的N,N,N-二氯苏磺酰胺基。所有样本都表现出对标准菌株和医院菌株的明显抗菌活性。由于较高的特定表面积,主食通常更有效。观察到抑制微生物生长的区域,并增加了固定氯的浓度。所有研究的织物样品对金黄色葡萄球菌不渗透。含有游离磺酰胺基的对照样品未显示抗菌特性。Conclusions: synthesized chlorine-active polymers have a pronounced antimicrobial activity against multi- drug-resistant microorganisms, demonstrate high resistance to microbial penetration and therefore are promising for creating a wide range of medical products on their basis: dressings, protective masks, antimicrobial fi lters, etc.关键字:抗菌聚合物,活性氯,N-氯磺酰胺,固定化,抗生素耐药性,微生物渗透性耐药性,敷料,敷料,口罩
摘要:麦卢卡蜂蜜 (MH) 在多种人类癌症的临床前模型中表现出潜在的抗肿瘤活性。体外用 0.3 至 5.0% (w/v) 浓度范围的 MH 进行处理可显著抑制人乳腺癌 MCF- 7 细胞的增殖,且这种抑制作用呈剂量依赖性,但 MH 在 MDA-MB-231 乳腺癌细胞中的抗增殖作用不太明显。在 2.5% w/v 浓度下,还对非恶性人乳腺上皮细胞 (HMEC) 进行了 MH 的影响测试,结果发现 MH 降低了 MCF-7 细胞的增殖,但没有降低 HMEC 的增殖。值得注意的是,MH 的抗肿瘤活性与用抗雌激素他莫昔芬治疗 MCF-7 细胞的活性范围相当。此外,MH 治疗在体外刺激了 MCF-7 细胞的凋亡,大多数细胞表现出与 PARP 激活相关的急性和显著水平的凋亡。另外,MH 的作用诱导了 AMPK 的激活和 AKT/mTOR 下游信号传导的抑制。用增加浓度的 MH 处理 MCF7 细胞以剂量依赖性方式诱导 AMPK 磷酸化,同时抑制 AKT 和 mTOR 下游效应蛋白 S6 的磷酸化。此外,MH 在体外降低了磷酸化的 STAT3 水平,这可能与 MH 和 AMPK 介导的抗炎特性相关。此外,在体内,单独施用 MH 显着抑制了裸鼠中已建立的 MCF-7 肿瘤的生长 84%,导致肿瘤体积明显减少。我们的研究结果强调需要进一步研究天然化合物(如 MH)的抗肿瘤功效和潜在的化学预防用途,并研究这些作用背后的分子途径。
摘要。- 目的:合成的大主教(SC)是具有交感神经作用的新精神活性物质,它出现在非法药物市场中,以取代控制刺激物。由于每年都有更多的功能和有毒物质进入非法群体,因此需要分析方法能够在常规和非经常生物学基质中检测这些新化合物。我们试图通过超高的表现液化和高分辨率质谱法(UHPLC-HRMS)的超高表现色谱法(UHPLC-HRMS),为三十二个父级SC和两个代谢物的靶向筛查和定量方法。材料和方法:将20毫克的头发样品浸入250 µL的2 mm弹药甲酸甲酸甲酸甲酸甲酸甲酸盐,甲醇和乙腈混合物(50/25/25,V/V/V)中,并在40°C下孵育过夜。孵育后,将样品在氮流下蒸发至干燥,并用100 µL流动相混合物(A:B,80:20)和10 µL注入UHPLC-HRMS。使用全扫描和靶向数据依赖的MS/MS扫描采集的Q Extivetm焦点质谱仪用于筛选和定量分析。结果:针对所有分析物,该测定法的线性为5至500 pg/mg头发。日期和日期精度始终<15%,矩阵效应和分析恢复始终在可接受的标准范围内(分别为±25%和> 50%)。已开发的方法应用于SCS消费者的真实头发样本。最普遍的SC是3,4-甲基二氧 - α-吡咯烷 - 亚苯乙酮,浓度范围为6.0-1,000.0 pg/mg,以及α-吡咯烷二甲基甲酮现象 - 分别为54.0和554.0 pg/mg(分别为544.0 pg/mg),3-甲基和556 pg/mg-person和556.0.0.0.0.0.0.0.0.0.0.n.met nin。 4-甲基甲性马丁酮(11.5和448.0 pg/mg)
大蒜素(diallthiosulfinate)是一种有效的抗菌物质,是由大蒜组织在损伤中产生的,作为防御病原体和害虫的防御。大蒜素是一种反应性硫种(RSS),可氧化谷胱甘肽和蛋白质中的可及性半胱氨酸。我们使用了差异同位素标记方法(OXIXAT)来鉴定细菌蛋白质组中的大shic氏靶标。我们比较了大鼠素荧光症的蛋白质组织PF 0-1和丙酸s耐鼠素暴露后的PF AR-1。在暴露于大蒜素之前,蛋白质主要降低,其中约77%的蛋白质表现出小于20%的半胱氨酸氧化。蛋白氧化在暴露于大蒜素后增加,仅来自大蒜素敏感的PF 0-1的蛋白质中只有50%,但来自大丙酸酯耐受性PF AR-1的蛋白质仍低于20%的氧化。DNA回旋酶被鉴定为大蒜素靶标。Cys 433大约6%。在大蒜素处理后,易感PF 0-1的CYS 433氧化程度增加到55%,但在耐受性PF AR-1中仅增加至10%。大蒜素在体外抑制了大肠杆菌DNA旋转酶的活性,其浓度与纳利迪酸相同的浓度范围。纯化的PF AR-1 DNA回旋酶在体外抑制比PF 0-1酶更大程度地抑制。将PF AR-1 Gyra替换为PF 0-1,使交换突变体比PF 0-1野生型更容易受到大种呼吸的影响。在一起,这些结果表明,在耐大slic蛋白耐sap的PF AR-1背景中,GYRA免受体内的氧化保护,而不是PF AR-1 Gyra亚基本质上比PF 0-1 gyra subunit在本质上易于抗原氧化。DNA回旋酶是药物重要的抗生素的靶标。因此,大蒜素及其类似物可能具有单独或与其他治疗剂结合的旋酶抑制剂的潜力。
目的:确定从尼日利亚科吉州阿尼格巴采集的土壤样本中分离的链霉菌属次级代谢物的抗菌、抗溃疡和细胞毒活性。方法:使用盐水虾致死率测定法对不同浓度(62.5、125、250、500、1000 mg/mL)的次级代谢物或参考 K 2 Cr 2 O 7 进行链霉菌次级代谢物的细胞毒活性(浓度范围:62.5 – 1000 mg/mL)。使用白化大鼠溃疡的阿司匹林和乙醇模型评估抗溃疡活性。五组动物,即三组预处理组,其提取物口服浓度为 100 和 200 mg/kg,一组预处理组以奥美拉唑 (30 mg/kg) 作为标准,另一组口服 2 mL/kg 生理盐水 (对照)。使用微量稀释法研究抗菌和抗真菌活性。结果:细胞毒性试验表明,与对照组相比,提取物浓度为 12.5 至 62.5 mg/mL 的毒性较小。对于抗溃疡活性,第 1 组动物表现出白细胞粘膜浸润、上皮细胞大量脱落和细胞出血,而第 2 组有轻度组织糜烂和小溃疡。在 3 至 5 组中,与 100 mg/kg 相比,200 mg/kg 提取物表现出出色的细胞保护作用和熟练的治疗能力,没有明显的副作用,而标准组表现出一些副作用,粘液细胞明显减少(p < 0.05)。次级代谢产物抑制了与溃疡有关的生物(幽门螺杆菌、大肠杆菌、弯曲杆菌属和链球菌属),发挥了治疗作用并保护大鼠免受溃疡。结论:从链霉菌属中分离的次级代谢产物对上皮组织无毒,具有抗菌和抗溃疡活性,因此具有作为抗消化性溃疡药物重要来源的潜力。关键词:抗溃疡、次级代谢产物、细胞毒活性、链霉菌属
2015年12月26日收到,2016年1月16日修订,2016年1月19日接受摘要乳酸是临床分析和食品行业中最重要的代谢产物之一。其检测是诊断许多人类疾病疾病的重要临床测定法。结果,最终提出了基于乳酸氧化酶(LOX)酶的检测方法,对乳酸及其相关的乳酸离子进行了分析。需要在显微镜下的智能乳酸生物传感器的开发基于智能乳酸生物传感器的开发(电化学效果晶体管)。乳酸和丙酮酸浓度谱,并从电极表面上的氢过氧化氢通量计算出电流。在存在乳酸离子的情况下,它负责在电化学微电极上氧化过氧化氢H 2 O 2,从而导致质子H +的产生,最后导致局部pH值降低。提出的模型指出了电子设计的作用,即每个体积单位n enz的酶单元数量,L-乳酸氧化酶Michaelis常数K M和乳酸浓度[S 1]。将电子概念扩展到检测到乳酸[1-6 mm]浓度范围的检测。灵敏度为13 mV/mm。关键字:基于乳酸生物传感器的电源,解决,电流,电化学微电极,ph。1。引言乳酸(C3-CH-OH-COOH)是一种与生命,健康和食物领域有关的许多生化和生物学过程涉及的众所周知的化学物种。对于食物化学,评估牛奶,牛奶产品,水果,蔬菜和葡萄酒的新鲜度和稳定性很有用。乳酸检测是通过使用四种酶:乳酸脱氢酶(LDH),乳酸氧化酶(LOX),单氧化酶乳酸(LMO)和细胞色素B2(Cyt B2)。在所有三种情况下,该过程都会导致丙酮酸和LMO导管乙酸盐。在所有情况下,检测都是基于乳酸氧化酶的酶促反应[1]。通过实现基于LOX的安培微传感器[2 3]成功完成了这项工作。检测原理是基于使用金属工作的微电极的使用,该微电极在其上被固定的酶层含有乳酸氧化酶。基于技术,使用了各种金属电极(铂[1 4 5 6],石墨[1],碳[1])和各种酶