固体钽电容器广泛用于太空应用,以过滤电源电路中的低频纹波电流并稳定系统中的直流电压。根据军用规格 (MIL-PRF-55365) 制造的钽电容器是可靠的元件,D 级或 S 级每 1000 小时的故障率低于 0.001%(故障率低于 10 FIT),因此这些部件属于可靠性最高的电子元件。尽管如此,钽电容器确实会发生故障,一旦发生,可能会对系统造成灾难性的后果。这是由于短路故障模式,可能会损坏电源,也是由于在低阻抗应用中发生故障时,带有锰阴极的钽电容器具有自燃能力。在此类故障中,钽颗粒与过热的氧化锰阴极产生的氧气发生放热反应,释放出大量能量,不仅会损坏部件,还会损坏电路板和周围元件。与陶瓷部件相比,钽电容器的一个特点是电容值相对较大,在当代小尺寸芯片电容器中电容值达到数十和数百微法拉。这可能会导致电路板首次通电时部件出现所谓的浪涌电流或开启故障。这种故障被认为是钽电容器中最常见的故障类型 [1],是由于电路中电压 dV/dt 的快速变化,在电路中电流不受限制时产生高浪涌电流尖峰,I sp = C×dV/dt。这些尖峰电流可以达到数百安培,并导致系统发生灾难性故障。浪涌电流故障的机理尚未完全了解,相关文献中讨论了不同的假设。其中包括持续闪烁击穿模型 [1-3];电感相对较高的电路中的电振荡 [4-6];阴极局部过热 [5, 7, 8];MnO 2 晶体撞击导致的五氧化二钽电介质机械损伤 [2, 9, 10];或电流尖峰期间产生的电磁力引起的应力诱导电子陷阱生成 [11]。然而,我们的数据显示闪烁击穿电压明显高于浪涌电流击穿电压,因此仍不清楚为什么没有闪烁的部件在浪涌电流测试 (SCT) 期间会在相同电压下失效。关于浪涌电流故障的一个普遍接受的解释是,在浪涌电流条件下,如果电流供应不受限制,钽电容器中的自愈机制不起作用,如果电流受到限制,那么本来会是一个轻微的闪烁尖峰,但到了部件上就会变成灾难性的故障 [1, 12]。电子元件(尤其是钽电容器)的使用风险可以定义为故障概率和后果(例如,表示为返工、重新测试、重新设计、项目延误等成本)的乘积。在这方面,钽电容器可以被视为具有高应用风险的低故障率部件。为了降低这种风险,有必要进一步开发筛选和鉴定系统,特别注意现有程序中可能存在的缺陷。
摘要 — 超宽带隙氧化镓 (Ga 2 O 3 ) 器件最近已成为电力电子领域的有希望的候选者;然而,Ga 2 O 3 的低热导率 (k T ) 引起了人们对其电热稳定性的严重担忧。这项工作首次实验演示了采用底部冷却和双面冷却配置封装的大面积 Ga 2 O 3 肖特基势垒二极管 (SBD),并首次表征了这些封装 Ga 2 O 3 SBD 的浪涌电流能力。与普遍看法相反,采用适当封装的 Ga 2 O 3 SBD 表现出很高的浪涌电流能力。具有 3×3 mm 2 肖特基接触面积的双面冷却 Ga 2 O 3 SBD 可以承受超过 60 A 的峰值浪涌电流,峰值浪涌电流与额定电流之比优于同等额定值的商用 SiC SBD。这种高浪涌电流的关键促成机制是导通电阻的温度依赖性小,这大大降低了热失控,以及双面冷却封装,其中热量直接从肖特基结提取,不需要通过低 k T 块状 Ga 2 O 3 芯片。这些结果消除了有关 Ga 2 O 3 功率器件电热耐用性的一些关键担忧,并体现了其芯片级热管理的重要性。1
上述外壳尺寸为典型尺寸。具体尺寸取决于订单数量。 9. ! 注意 9-1.浪涌电流 施加到产品上的浪涌电流(脉冲电流或冲击电流)超过规定的额定电流可能会导致严重故障,例如开路、因温度过高而烧毁。如果施加浪涌电流,请提前联系我们。 9-2. 应用限制 在将我们的产品用于下列需要特别高可靠性的用途之前,请与我们联系,以防止可能直接对第三方的生命、身体或财产造成损害的缺陷。 (1)飞机设备 (2)航空航天设备 (3)海底设备 (4)发电厂控制设备 (5)医疗设备 (6)防灾/防盗设备 (7)交通信号设备 (8)运输设备(汽车、火车、轮船等) (9)数据处理设备 (10)与上述用途具有相似复杂性和/或可靠性要求的用途 10. 注意事项 本产品设计为焊接安装。如需使用导电粘合剂等其他安装方法,请提前咨询我们。 10-1. 焊盘图案设计 标准焊盘尺寸(流动和回流焊接) 焊接 a b c
• 双 BLDC 电机 FOC、压缩机和风扇 • 数字交错 PFC、2 级、CCM • 数字软启动浪涌电流限制器,无继电器、无 NTC
表 1 最大额定值 符号 值 单位 断态重复峰值电压 V DRM 1500 V 反向重复峰值电压 V RRM -10 V 断态电压变化率抗扰度(VD =1500V) dv/dt 1000 V/µSec 峰值非重复浪涌电流(1/2 正弦波脉冲持续时间 =/<300nSec) I TSM 4000 A 峰值重复浪涌电流(1/2 正弦波脉冲持续时间 =/<300nSec) I TRM 3500 A 电流变化率 dI/dt 100 kA/µSec 临界电容放电事件积分(欠阻尼 LCR 电路) I 2 t CRITICAL TBD A 2 秒重复电容放电事件积分(欠阻尼 LCR 电路) I 2 t REPETITIVE 2A 2秒连续栅极-阴极反向电压V GKS -9 V正向峰值栅极电流(10
- Gundam1000mA 可编程充电电流 - 无需 MOSFET、检测电阻或反向二极管 - 适用于单节锂离子电池,采用 ESOP8 封装 - 恒流/恒压模式工作,具有热保护功能 - 精度达到±1% 精确预设充电电压 - 待机模式下的电源电流为 50uA - 2.9V 涓流充电电压 - 软启动限制浪涌电流 - 电池温度监测功能 - CE 使能功能
一个关键的设计考虑因素是器件处理不安全电流水平的能力。与现有的 HITFET ® 一样,过载保护(包括短路和过热保护)分阶段起作用。这意味着如果超过内部电流限制 I D(lim),输出级不会立即关闭,但电流会限制为 I D(lim),并设置相应的位组合(SPI 寄存器)(预警)。因此,器件在模拟区域内工作,漏极和源极之间的电压增加。由于功耗增加,这会导致芯片温度升高。为了防止超过最大结温,受影响通道的温度传感器会关闭输出级。因此,器件可以自我保护。2.1.1 驱动灯 对于具有电容行为的负载,例如开关灯时,浪涌电流可能是稳态值的八倍或十倍。TLE 62xx GP 设备非常适合此类应用,因为它具有内部电流限制,可延长灯的工作寿命。图 3 显示了标称电流约为 0.8 A 的灯的开关。此处的“浪涌电流”限制在 1.3 A 左右。
a) 环境温度:控制测量表明,环境温度对穿越时间测试结果的影响很小。根据用于降低输入浪涌电流的拓扑结构,环境温度会对电压骤降测试后出现的峰值电流产生重大影响。因此,测试是在 25°C 和 +60°C 的环境温度下进行的。假设半导体加工设备从不在低于 +25°C 的温度下使用。虽然电源本身规定温度低至 -40°C,但不会在如此低的温度下进行测试。